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1. Introduction 
  
1.1 Objective of research 
 
The objective of this project was to develop a radically new class of tools to analyze and model 
systems for agent-based computing. We built on a foundation of analytic approaches developed 
within intelligence analysis (Sparrow 1991) and social network analysis (Scott 1991; Wasserman 
and Faust 1994). At the time we proposed this work, these approaches were almost unknown in 
computer science, but we conjectured that these approaches would be uniquely suited to help 
understand the behavior of agent-based computing systems. With these tools, we aimed to assist 
contractors in the TASK program to inquire into the busy, and sometimes covert, behaviors of 
agents.  
 
Two key technologies lay at the core of this project: 1) a new representation for experimental 
data; and 2) new techniques for analyzing those data. Specifically, we used a relational data 
representation that is common in intelligence analysis and quantitative sociology, but rarely used 
in statistics and data mining. We conjectured that this representation could capture many of the 
important aspects of the behavior of agent-based systems — far more of those behaviors than 
traditional data representations. In addition, we developed new tools to facilitate analysis of data 
recorded in this representation. Based on our work with a prototype system and our work in 
analyzing the performance of agent-based systems, this appears to be a particularly promising 
way to accelerate discoveries in agent-based computing and improve our understanding of 
current systems.  
 
Our project addressed the TASK research goals of modeling agent behavior and modeling the 
behavior of agent systems. Our tools produce statistical models that predict behavior and more 
qualitative characterizations of an agent or agent-based system (e.g., clusters of agents and agent 
groups that exhibit similar behavior or organization). In addition, we found that this modeling 
and characterization identified key features of agents that should be represented by any agent 
creation tool and by agents themselves.  A common theme in the history of science is that new 
tools for observation and analysis often spur fundamental advances. We believe that research in 
agent-based computing will accelerate if investigators are given better methods to record and 
analyze the behavior of their agents. Investigators will gain greater insight into intentional 
behaviors, clearer descriptions of emergent behaviors, and faster identification of pathological 
behaviors. Perhaps most importantly, they will be better equipped to characterize the 
fundamental principles by which their systems operate, laying the foundation for a science of 
agent-based computing. 
  
1.2 Approach 
 
Several small communities of academic researchers have pursued work in analyzing relational 
data, including inductive logic programming (ILP) (Muggleton 1992), relational learning 
(Quinlan 1990; Friedman, Getoor, Koller, and Pfeffer 1999), and social network analysis (SNA) 
(Scott 1991; Wasserman and Faust 1994). In addition, software developers in intelligence 
analysis and law enforcement have devised several practical systems for visualizing relational 
data.  

  1



  

 
The focus of our work differed from, and built upon, this prior work in fundamental ways. First, 
we built tools to discover statistical patterns in relational data. ILP techniques typically require 
that patterns be deterministic. Second, our tools assist analysts in exploration of the data with a 
broad set of tools for querying, statistical modeling, and visualization. Techniques in ILP and 
relational learning are often completely automated, and techniques from intelligence analysis and 
law enforcement merely assist with visualization, rather than more quantitative analysis. Finally, 
our techniques analyze large databases, potentially containing tens of thousands of objects and 
millions of individual pieces of data. In contrast, techniques from ILP, SNA, and applied 
software products are only applicable to data that are orders of magnitude smaller. 
  
1.3 Outcomes 
 
This research produced key outcomes in four categories:  
 

1) New knowledge discovery algorithms — These techniques include three different 
statistical models (relational probability trees, relational Bayesian classifiers, and 
relational dependency networks), as well as a graphical query language (QGraph). 

 
2) Fundamental discoveries about the challenges and opportunities of constructing 

statistical models in relational data — We discovered several ways in which relational 
data invalidate the assumptions of existing methods for statistical modeling, and we 
discovered new opportunities that could be exploited by techniques specifically designed 
for relational data.  Specifically, we identified how three common features of relational 
data (concentrated linkage, autocorrelation, and degree disparity) can bias algorithms that 
construct statistical models and we identified how a new framework for learning and 
using statistical models (called collective inference) can significantly improve the 
accuracy of statistical models of relational data. 

 
3) Software prototypes of the algorithms developed — We released multiple versions of 

Proximity, our software environment for relational knowledge discovery.  Each of these 
versions was made available to DARPA contractors.  The final versions (3.0 and 3.1) 
were made available open-source. 

 
4) Simulation environment for multi-agent systems that helped evaluate our techniques — 

We developed the UMass UAV Simulator using the Breve Simulation Environment 
developed at Hampshire College.  We worked jointly with Lee Spector at Hampshire to 
evaluate our research using the simulator.  Hampshire evolved new UAV controllers 
within the simulator, and we evaluated the behavior of those simulated UAVs. 

 
Support from this contract was instrumental in achieving each of these outcomes, but this 
contract was not the sole source of support.  The research and development outlined here was 
also supported by another AFRL contract (F30602-01-2-0566).  Support was split approximately 
equally between the two contracts during the period over which both contracts were active. 
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Finally, students and staff of the Knowledge Discovery Laboratory were awarded first place in 
the 2003 KDD Cup competition, the most widely recognized competitive evaluation of 
technologies for knowledge discovery and data mining.  KDL's winning team consisted of Amy 
McGovern, Lisa Friedland, Michael Hay, Brian Gallagher, Andrew Fast, Jennifer Neville and 
David Jensen. The UMass team competed in the “open task” (one of four tracks in the 2003 
KDD Cup competition) that allowed contestants to define their own analysis tasks. Winners were 
selected by a panel of judges. The title of the UMass entry was “Exploiting Relational Structure 
to Understand Publication Patterns in High Energy Physics” (McGovern et al. 2003). 
 
2. Knowledge discovery algorithms 
 
We developed three different statistical models, a graphical query language, and pioneered the 
application of vertical databases to knowledge discovery. 
 
The statistical models represent the conditional and joint probability distributions of attributes in 
relational data. The models estimate the probability distribution of attributes on an entity or 
relationship (e.g., the type of an agent, or the probability of success of an inter-agent request) 
based on the structure and attributes of surrounding entities and relationships (e.g., the number 
and types of other active requests involving the two agents).  Specifically: 
 

• Relational Bayesian classifiers  — A relational Bayesian classifier (RBC) is a relational 
version of the simple Bayesian classifier (Neville, Jensen, and Gallagher, 2003). This 
classifier builds a conditional model of an attribute based on the attributes of surrounding 
objects and links. Although the RBC is a simple model, it performs quite well.  

 
• Relational Probability Trees — A relational probability tree (RPT) selectively considers 

attributes of nearby objects and links as well as complex aggregates of these attributes to 
build a conditional model of an attribute (Neville, Jensen, Friedland, and Hay, 2003). 
Advantages of this model include a correction for the autocorrelation and degree disparity 
properties found in many relational data sets as well as ease of model understanding 
(Jensen & Neville 2002; Jensen, Neville, & Hay 2003).  

 
• Relational Dependency Networks — Relational dependency networks (RDNs) estimate 

the joint distribution of attribute values in relational data by extending dependency 
networks to a relational setting (Neville  and Jensen, 2004). RDN models are a new form 
of probabilistic relational models that offer advantages over relational Bayesian networks 
(RBNs) and relational Markov networks (RMNs). Advantages of RDN models include an 
interpretable representation that facilitates knowledge discovery in relational data; the 
ability to represent arbitrary cyclic dependencies, including relational autocorrelation; 
and simple and efficient methods for learning both model structure and parameters 

 
In addition to these statistical models, we developed QGraph, a graphical query language that 
computes fast matches to flexible, high-level descriptions of relational data patterns (Blau, 
Immerman, and Jensen, 2002). We also pioneered the use of vertical database technology to 
knowledge discovery algorithms.  The use of this technology allows our algorithms to be 
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implemented in ways that allow them to be orders of magnitude faster than systems hosted on 
SQL databases for the types of operations needed for effective relational knowledge discovery. 
 
3. Statistics of relational knowledge discovery 
 
In addition to new models, we discovered new aspects of statistical reasoning that affect 
algorithms for learning in relational data.  Specifically, we identified three basic characteristics 
of relational data sets that affect statistical inferences: 
 

• Autocorrelation and autocorrelation — We showed that concentrated linkage (the 
tendency of some types of objects to be linked to a large number of other objects) and 
relational autocorrelation (the tendency for the same attribute on related items to have 
correlated values) can cause learning algorithms to be strongly biased toward certain 
features, irrespective of their predictive power. We identified these characteristics, 
defined quantitative measures of their severity, and explained how they produce this bias 
(Jensen & Neville 2002). 

 
• Degree disparity — We showed that degree disparity can lead relational learning 

algorithms to discover misleading correlations.  Degree disparity occurs when the 
frequency of a relation is correlated with the values of the target variable. In such cases, 
aggregation functions used by many relational learning algorithms will result in 
misleading correlations and added complexity in models. We examined this problem 
through a combination of simulations and experiments (Jensen, Neville, and Hay 2003). 
We also showed how two novel procedures for hypothesis testing can adjust for the 
effects of using aggregation functions in the presence of degree disparity. 

 
4. Proximity software 
 
Proximity is a software environment that incorporates a wide variety of the research findings and 
technologies developed under the contract, including new types of statistical models, new 
learning algorithms, advances in automated inference, corrections for statistical errors that bias 
the models constructed by more conventional tools, and the QGraph query language. Proximity 
provides a convenient platform for research into relational knowledge discovery and practical 
applications to real-world data.  In the final version of software developed under this contract 
(3.1), Proximity encompasses over 30,000 lines of Java code, including a graphical user 
interface, a Python-based scripting interface, and data export and import facilities. 
 
The first version of Proximity was released in August 2001.  Subsequent versions provided 
progressively greater capabilities: 
 

• Version 1.1 (October 2001) — Provided new interface capabilities. 
 

• Version 1.2 (July 2002) — Significantly improved configurability and simplicity of 
running Proximity, expanded scripting capabilities and graphic user interface capabilities, 
added a modular QGraph query processor,  
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• Version 2.0 (December 2002) — Introduced algorithms for learning and making 
inferences with relational probability trees as well as major expansions to the 
implementation of QGraph. 

 
• Version 3.0 (April 2004) — Completely re-written to use MonetDB, a fast, open-source 

vertical database. MonetDB allowed Proximity to be orders of magnitude faster than 
systems hosted on SQL databases for the kinds of operations needed by relational 
knowledge discovery.  In addition, this version featured a greatly extended QGraph 
Implementation, a graphical editor supporting interactive creation of QGraph queries, and 
a browser-style graphic user interface, and XML-based data import.  This version was 
also released under an open-source software license and included an 80-page tutorial. 

 
• Version 3.1 (September 2004) — Introduced an RPT viewer, the ability to run Python 

commands interactively from a command-line window in the GUI, and social network 
analysis tools, as well as many bug fixes and performance enhancements. 

 
5. Multi-agent simulators 
 
The evaluation of our techniques for data analysis virtually required a complex multi-agent 
system.  We needed to collect data from such a system, analyze those data, and then be able to 
examine the validity of the resulting conclusions.  We needed a moderately complex multi-agent 
system, which exhibited emergent behavior, and which was able to run locally with little effort. 
 
Unfortunately, many of the systems being developed by other TASK contractors were not well-
suited to evaluating our techniques.  Some of the contractors were focused on single-agent 
systems.  Other contractors were not constructing entire multi-agent systems.  Still others were 
constructing systems that were far too simple to tax the analysis capabilities of our techniques. 
 
However, ongoing research at another TASK contractor (Hampshire College) was nearly ideal 
for our purposes, and we collaborated actively with Hampshire for the last two years of the 
contract.  During that time, we employed the Breve Simulation Environment (developed at 
Hampshire College) to develop the UMass UAV Simulator.  We then provided the UAV 
Simulator to Hampshire, within which they developed agents various evolutionary programming 
techniques.  We then analyzed the behavior of the evolved agents using Proximity.  This 
interleaved collaboration proved highly successful for both UMass and Hampshire. 
 
6. Discussion and future research directions 
 
Our work has developed several key algorithms for learning statistical models of relational data, 
discovered some key characteristics of relational data that can strongly bias the results of naive 
algorithms, and produced reliable software prototypes.  Our work has pointed to several 
important future directions for work on analysis tools for multi-agent systems: 
 

• Temporal analysis — The tools that we developed are useful, but their utility is limited 
when the behavior to be analyzed is strongly temporal.  Our tools are primarily useful for 
analyzing agent organizations rather than agent activities.  This is a key distinction, and 
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one that was not clear when we began the project.  The next major frontier for these tools 
is to simultaneously handle both organizational relations and temporal relations. 

 
• Support for massive data sets — Many of the actual multi-agent systems we examined 

could generate massive amounts of data in very little time.  When agents change state, 
communicate, or alter their organizational relationships frequently, this can produce large 
numbers of records.  While we found that a relational representation was essential for 
capturing the organization and activities of a multi-agent system, handling large number 
of these records remains a challenge. 

 
• Visual analysis tools — Algorithms for constructing statistical models are an essential 

tool for understanding large data sets, but visual analysis is also extremely important.  
Many analysts simply want to look at their data.  Tools for visualization of data from 
multi-agent systems remains a key area for future work. 
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Correlation and Sampling in Relational Data Mining

David Jensen and Jennifer Neville
{jensen|jneville}@cs.umass.edu

 Knowledge Discovery Laboratory
Computer Science Department

Univ. of Massachusetts
Amherst, MA 01003 USA

Abstract

Data mining in relational data poses unique opportunities and challenges. In
particular, relational autocorrelation provides an opportunity to increase the
predictive power of statistical models, but it can also mislead investigators using
traditional sampling approaches to evaluate data mining algorithms. We investi-
gate the problem and provide new sampling approaches that correct the bias as-
sociated with traditional sampling.

1. Introduction

We are studying how to learn predictive models from relational data with PROXIMITY, a
knowledge discovery system for analyzing very large relational data structures.  In this
paper, we report on issues of correlation and sampling that arise from the special features
of relational data.  Specifically, we identify a common type of probabilistic dependence
in relational data that we call relational autocorrelation. We show how this type of auto-
correlation can bias evaluations of data mining algorithms that use traditional approaches
to sample relational data. We describe and evaluate new sampling procedures that can
prevent this bias.

We discuss these findings in greater detail below. First, we review current uses of rela-
tional data and describe the object-and-relational-neighborhood (ORN) approach to rela-
tional learning. Next, we demonstrate and describe relational autocorrelation. We then
describe a family of sampling procedures that can be used to evaluate the effects of rela-
tional autocorrelation and give the results of applying those procedures in a complex re-
lational data set. Finally, we briefly describe planned future work.

2. Objects and Relational Neighborhoods

In this paper, we examine how to construct and evaluate classification models in rela-
tional data. Relational data consist of objects (representing people, places, and things)
connected by links (representing persistent relationships among objects). Often, the ob-
jects and links are heterogeneous, representing many different types of real-world entities
and relationships.

For example, relational data could be used to represent information about the motion
picture industry, where objects represent studios, movies, awards, and persons (e.g., ac-
tors, directors, and producers) and links represent relationships (e.g., actor-in and remake-
of). A schema for one such movie database from the UCI repository is shown in Figure 1.

This type of relational data can be stored in conventional relational databases, or in less
structured formats such as graph databases, web page repositories, or semi-structured
databases. In the case of PROXIMITY, we have implemented a specialized graph database
on top of a conventional relational database engine.
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Movie
(11467)

Dir/Prod
(3313)

Actor
(6848)

Studio
(194)

Award
(35)

Awarded (2495) StudioOf (5474)

Produced (2155)

Directed (11285)

AppearedIn (29020)

RemakeOf 
(1144)

Figure 1: The movie database schema. Attributes on objects and links are not shown.
Numbers indicate the frequency of each element in the UCI movie data.

Our approach to data mining in relational data focuses on objects and their relational
neighborhoods. Our techniques build models that predict the value of an attribute of an
object based on intrinsic attributes of that object and relational attributes that capture
characteristics of the Òrelational neighborhoodÓ of the object. For example, we have con-
structed statistical models that predict the genre of a movie (e.g., drama, comedy, sus-
pense) based on its intrinsic attributes (e.g., year of production) and its relational attrib-
utes (e.g., total number actors). A relational attribute can capture either the characteristics
of a single related object (e.g., years of experience of a movieÕs director) or the aggregate
characteristics of multiple objects in the relational neighborhood (e.g., average years of
experience of all a movieÕs actors). We call this approach to relational learning the object
and relational neighborhood (ORN) approach.

The general idea of ORN is a common feature underlying many systems for relational
learning. For example, probabilistic relational models (Friedman et al. 1999) use field
values from individual database records and aggregations of values from related records
to construct Bayesian networks. WEBKB (Craven et al. 1998) learns na�ve Bayes classifi-
ers and rules in first-order logic that employ intrinsic attributes of webpages and their
links to other pages to classify the pages into categories (e.g., student homepage, depart-
mental homepage, and course homepage). Several methods from inductive logic pro-
gramming (Muggleton 1992) use intrinsic and relational clauses to make predictions
about individual objects. Finally, our own prior work on PROXIMITY uses an ORN ap-
proach to classify objects based on intrinsic and relational attributes (Neville and Jensen
2000). These approaches differ widely in the expressiveness of their model representation
and the methods used to construct models. Still, all construct models that predict the at-
tributes of an object based on the attributes of that object and those of closely related ob-
jects.

3. An Example: Classifying Movies

We have successfully learned classification models using this basic framework of objects
and their local neighborhoods, but relational data can pose unique opportunities and
challenges that are not typically encountered in traditional data mining problems. As an
example, consider the problem of constructing a classification model to predict the genre
of a movie (e.g., drama, comedy, suspense) based on a movieÕs actors, director, producer,
studio, and awards. Specifically, we calculated nine relational attributes of movies (e.g.,
AwardCount(x), HasRemake(x), ActorCount(x), and PercentWomenActors(x)), and used
them to construct na�ve Bayes classifiers to predict genre. We randomly generated five
different pairs of training and test sets, where each pair contains disjoint sets of movies.
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For each pair, we constructed classifiers on the training set, estimated their accuracy on
the test set, and then averaged the five trials.1

The classifier is able to achieve an average test-set accuracy of 40%. Accuracy for the
best default classifier (genre = drama) is 24%, and the standard deviation of the estimate
is less than 0.007. While the classifier is far from perfect, it appears to represent a genu-
ine association between the attributes and the class label. If we delve more deeply into the
model and analyze the performance of individual attributes, it becomes clear that a model
containing only one of the nine attributes can account for nearly all of the elevated accu-
racy associated with the model.  That attribute Ñ DirectorLastName Ñ is unusual be-
cause it contains such a large number of values.  Indeed, individual values sometimes
refer to only a single object in the data (e.g., Alfred Hitchcock).

This information about the na�ve Bayes model raises an important question Ñ What
knowledge does this simple model express?

One way of characterizing the observed behavior is that it represents a relational version
of the "small disjuncts" problem (Holte, Acker, & Porter 1989). This problem arises in
non-relational learning when overfitted models parse the instance space into sets ("dis-
juncts") containing only a few data instances. For example, when a decision tree is
pathologically large, its leaf nodes can apply to only a single instance in the training set.
Such models perform as lookup tables that map single instances to class labels. They
achieve very high accuracy on training sets, but they generalize poorly to test sets, when
those test sets are statistically independent of the training set.

In the relational version of the small disjuncts problem, models use relational attributes to
parse the space of peripheral objects into sets so small that they can uniquely identify one
peripheral object (e.g., a single Director). If that object is linked to many core objects of a
single class (e.g., genre = comedy), then a model that uniquely identifies that object can
perform well on the training data. If that peripheral object appears in both training and
test data, then the model can also perform well on test data.

These conditions certainly hold in the movie data. Single director are often linked to
multiple movies, directors often direct movies in a small number of movie genres, and
each value of DirectorLastName often identifies no more than one director. For example,
Table 1 shows the frequency distributions of genre for directors linked to more than 25
movies. The distributions clearly differs by  director.  Ingmar Bergman has directed 28
movies in the data set, and 26 were dramas. Ninety-eight percent of all films directed by
Robert Stevens are in the genre of suspense.

We intentionally included DirectorLastName in this experiment to evaluate the effect of
small disjuncts when classifying movies, although we could have tested the effect by
learning classification trees or rules which can use logical combinations of several attrib-
utes having fewer values than DirectorLastName. In either case, an overfitted model can
uniquely identify directors, and then exploit that information when a director appears in
both the training and test sets.

However, viewing the observed behavior of the movie classifier as merely the result of
the small disjuncts problem ignores an important feature of the movie data. The attribute
genre exhibits relational autocorrelation. That is, when objects x and y are Òclosely re-
latedÓ, then:

                                                            
1 We avoided the more traditional approach of 10-fold cross-validation for reasons explained in

section 5.
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where g(x) represents the value of some attribute on x. In the case of genre in the movie
data, Òclosely relatedÓ refers to the linkage of two movies through a common director.

Relational autocorrelation is similar to temporal autocorrelation that arises in many
econometric problems and other time-series prediction tasks, and it is similar to spatial
autocorrelation which arises in statistical models in geography and computer vision.

Relational autocorrelation is easy to demonstrate in the movie data. An expanded version
of the contingency table shown in Table 1 can be constructed and analyzed with tradi-
tional statistical significance tests. The relationship between genre and director can be
tested under the null hypothesis of independence. The relationship is significant at less
than the 0.1% level.

Name ActAdv Comd Dram HistDoc Other Rom ScFiF Susp Total
A. Konigsberg 0 15 3 0 0 7 0 0 25
A. Hiller 1 7 4 1 0 1 0 18 32
E. Lubitsch 0 10 9 0 4 9 0 0 32
F. Strayer 0 28 0 0 0 0 1 0 29
G. Thomas 0 30 0 0 0 0 0 0 30
G. Cukor 0 6 12 1 4 4 1 1 29
H. Daugherty 0 0 0 0 0 0 0 28 28
I. Bergman 0 0 26 0 0 1 1 0 28
J. Huston 6 3 8 2 0 2 0 4 25
M. Kertesz 8 1 4 3 5 5 1 3 30
P. von Henreid 0 0 1 0 0 2 0 29 32
R. Altman 1 6 7 3 1 0 2 5 25
R. Stevens 0 0 0 0 0 0 1 49 50
R. Stevenson 2 3 3 1 0 0 9 7 25
S. OÕFearna 12 3 8 3 0 1 0 0 27
A. Hitchcock 2 0 7 0 0 3 0 65 77

Table 1: Frequency distributions of movie genre for all directors linked to 25 or more
movies. The distributions differ significantly by director (p<0.001).

Autocorrelation is a very common feature of relational data sets. For example, we have
observed relational autocorrelation among movie genre with respect to other objects (e.g.,
studios).  We have also observed autocorrelation in a data set on the industry structure of
the chemical and banking industries formed from SEC records. Objects in that data set
represent companies, officers, directors, owners, as well as ancillary companies such as
auditing firms, legal firms, and stock transfer agents. In the SEC data, industry sector
exhibits autocorrelation with respect to officers and directors, indicating that persons who
sit on multiple boards of directors tend to stay within either banking or chemicals. Auto-
correlation was not observed with respect to auditing firms, indicating that the relatively
small number of auditing firms tend to target companies in all industries equally.

Relational autocorrelation can be exploited to boost the predictive accuracy of predictive
models. For example, our own work has explored iterative classification, a technique that
builds models based on relational attributes that aggregate predicted class labels of re-
lated objects (Neville and Jensen 2000). Iterative classification can be used to identify the
predominant genre of a director from information in the test set alone, and then use that
information to improve the accuracy of models of a movieÕs genre. Work by Slattery and
Mitchell (2000) explores other methods of explicitly accounting for shared objects in
classification of relational data sets. These methods allow classifiers to represent the valid
statistical regularities in relational data (e.g., that directors tend to stay within a genre),
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rather than erroneously concluding that a particular last name (or a unique collection of
other attributes) predisposes a director to a genre.

4. Sampling to Detect Autocorrelation

Given that autocorrelation is an important issue in applying data  mining algorithms to
relational data, our evaluation techniques should be able to test for the existence of rela-
tional autocorrelation, and to remove the effects of such autocorrelation when desired.
This would allow investigators to clearly understand what effects are responsible for the
performance of a given model, and thus understand what features are necessary in new
data for models to perform well. For example, if a model to predict movie genre relies on
DirectorLastName and relational autocorrelation with respect to director, then a model
learned from movies in the 1950s is unlikely to work well on data from the 1990s, be-
cause few directors worked in both decades. In contrast, the model could be expected to
perform well on randomly selected data from the early 1960s.

One approach to detecting relational autocorrelation is to test all possible subsets of ob-
jects and links that could form connections among the objects being classified. This ap-
proach would be a natural one for investigators familiar with data mining, but it has sev-
eral drawbacks. First, such an approach could be prohibitive when data contain hundreds
of possible attributes and many possible subsets of objects through which relational auto-
correlation could occur. More importantly, it only allows us to determine that relational
autocorrelation exists, but does not allow us to determine the effect on the accuracy of a
predictive model nor how the model would perform in the absence of autocorrelation.

The remainder of the paper describes and evaluates an alternative approach Ñ sampling
relational data in ways that allow some types of relational autocorrelation and eliminate
other types. These techniques allow investigators to train and test of models with the ef-
fects of particular types of relational autocorrelation entirely removed, and thus check for
specific types of autocorrelation.

Sampling Relational Data

Nearly every data mining algorithm is applied to samples of data drawn from a much
larger population of possible instances. Even after one such sample exists, a sampling
algorithm is often applied again to further divide the sample into training and test sets for
algorithm evaluation, to conduct n-fold cross-validation internal to algorithms, to exam-
ine algorithm performance as sample size is varied (Oates and Jensen 1998), or to im-
prove the computational efficiency of a learning algorithm (Srinivasan 1999).

Most sampling in machine learning and data mining assumes that instances are independ-
ent and identically distributed (iid). A few areas of data mining explicitly use non-random
sampling, but either this work is relatively unusual (e.g., active learning and heterogene-
ous uncertainty sampling (Lewis and Catlett 1994)) or highly specific (e.g., time series
analysis). Most general sampling techniques assume that drawing one instance from a
population should not affect the probability of inserting any other instance into that sam-
ple.

In contrast, this paper examines situations where instances are not iid, and our samples
are created with the ultimate goal of constructing and evaluating predictive models.
Methods for sampling relational data are not well understood. In the relatively few cases
where researchers have considered special methods for sampling relational data for ma-
chine learning and data mining, they have often relied on special characteristics of the
data. For example, some researchers have exploited the presence of naturally occurring,

14



disconnected subsets in the population, such as multiple websites without connections
among the sites (e.g., Craven et al. 1998). We wish to evaluate classification models that
operate over completely connected graphs. There is also a small body of literature on
sampling in relational databases (e.g., Lipton et al. 1993), but this work is intended to aid
query optimization while our interest is to facilitate evaluation of predictive models.

A sampling algorithm for relational data assigns core and peripheral objects to samples.
Recall that core objects are the objects being classified and peripheral objects are all ob-
jects needed to calculate relational attributes for a core object. One core object and all its
peripheral objects form a subgraph. When a sample completely contains a subgraph, the
subgraph j of sample k is denoted Sjk (the sample subscript is omitted when not necessary
for clarity). An object i is denoted Oi. The predicate in(Oi,Sj) indicates that object i is
contained in subgraph j. The predicate core(Oi,Sj) indicates that object i is the core object
of subgraph j, and periphery(Oi,Sj) indicates that object i is in the periphery of subgraph
j. For any given subgraph, the core and periphery are  mutually exclusive, and every ob-
ject in a given subgraph is either in the core or the periphery. Thus, for all i,j:

core O S periphery O S

in O S core O S periphery O S
i j i j

i j i j i j

( , ) ( , )
( , ) ( , ) ( , )

⇔ ¬
→ ∨

Note that an individual object can appear as the core of more than one subgraph, as a
peripheral object of more than one subgraph, or as the core of some subgraphs and as a
peripheral object of other subgraphs.

An algorithm may, or may not, use knowledge about the subgraph membership of objects
when constructing the samples. Below, we analyze one technique that ignores subgraph
membership and three others that use subgraph membership to decide which objects to
add to a given sample. We evaluate each in terms of how the estimate accuracy in the
face of relational autocorrelation. We also evaluate their sampling efficiency Ñ the frac-
tion of all instances that can be placed into one of several disjoint samples. In random
sampling of iid data, sampling efficiency is always 100% (all instances can be placed into
one of the samples). In non-random sampling algorithms, sampling efficiency can be
lower than 100%. For example, in a population of 50 women and 50 men, a stratified
sampling technique that draws a sample containing 66% women (e.g., 50 women and 25
men) would have only 75% sampling efficiency. As we show below, the efficiency of
subgraph sampling can also be lower than 100%.

Object Sampling

The simplest technique for sampling relational data is object sampling Ñ each object is
placed in a sample selected at random, without regard to other objects already in that
sample. If two objects are both placed in a given sample, then the links that connect those
two objects in the population are also included in the sample. Object sampling is 100%
efficient, because all objects are placed in a sample, and it also produces independent
samples.

However, object sampling nearly always introduces both bias and variance into the val-
ues of relational attributes, and the magnitude of these effects is inversely proportional to
the size of samples. These errors arise because object sampling causes subgraphs to be
fragmented across multiple samples. Under object sampling, if a given core object is as-
signed to a particular sample, it is extremely unlikely that all its peripheral objects will be
assigned to the same sample. For a given core object, the probability that all peripheral
objects will be assigned to the same sample is pn where p is the percentage of all objects
assigned to the coreÕs sample and n is the total number of peripheral objects for the given
core object. Even in extremely favorable conditions (e.g., 50/50 sampling and 5 periph-
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eral objects), the probability that a given core object will have a complete periphery is
very small (0.03125). In less favorable conditions (10-fold cross-validation and 25 pe-
ripheral objects), the probability of a complete periphery is effectively zero (10-25).

Splitting subgraphs across samples causes fragmentation effects in relational data. Some
of these effects arise because several techniques for ORN learning rely on relational at-
tributes that apply aggregation functions to attribute values of peripheral objects. For ex-
ample, relational attributes for movies could include the maximum age of any actor in the
movie, the total number of actors, and the mean number of movies made by actors in the
movie. Popular aggregation functions include sum, maximum, minimum, count, mean,
median, mode, and standard deviation. These types of aggregation functions are used
extensively in probabilistic relational models and in our own learning algorithms for
PROXIMITY.

Subgraph fragmentation causes bias and increased variance in aggregate attributes. With
some aggregate attributes (those using functions such as sum, maximum, minimum, and
count), fragmented subgraphs leads to statistical bias in attribute estimates. In each case,
removing objects from a subgraph can only cause the estimated value of the aggregate
attribute to move in a single direction, thus leading to a biased estimate of the true value
obtained from the complete subgraph. For example, the aggregate attribute maximum-
actor-age for a given movie can only remain the same or decrease as peripheral objects
(e.g., actors) are removed from the sample containing the core movie. In other aggregate
attributes (those using functions such as mean, median, mode, and standard deviation), a
fragmented subgraph leads to increased variance in attribute estimates. In each of these
cases, removing objects from a subgraph decreases the number of data points available to
estimate these aggregate values, and thus fragmentation increases the variance (conven-
tionally called the standard error) of that estimate.

Another fragmentation effect arises because some techniques for ORN learning rely on
path attributes that measure the distance from the core object to specific types of periph-
eral objects. For example, a path attribute might indicate the minimum path length from a
core movie to an Oscar-winning movie, traversing the graph through actors and directors.
Any movie starring Clark Gable would have a maximum path length of 1, because of his
role in the Oscar-winning movie ÒGone with the Wind.Ó An Oscar-winning movie itself
would have a path length of zero. Path attributes are not yet extensively used in relational
learning, but are common in analyses of social networks (Wasserman and Faust 1994),
scientific citations, and the World Wide Web (Watts 1999). Path attributes have also been
popularized by concepts such as Erd�s number (the number of traversals through
coauthored papers necessary to reach from a given person to the mathematician Paul
Erd�s) and the game ÒSix Degrees of Kevin BaconÓ (where participants attempt to link a
given actor to Kevin Bacon by traversals through movies with multiple actors).

Subgraph fragmentation causes positive bias in path attributes. Subgraph fragmentation
removes objects (and thus links) from subgraphs, and thus can increase the estimated
values path length attributes. Removing a peripheral object either leaves path length un-
changed or increases it, and thus subgraph fragmentation can lead to positive bias in es-
timates of the value of path attributes. In the worst case, subgraph fragmentation can
make the estimated path length essentially infinite by making a destination object entirely
unreachable.

How do these types of bias and increased variance affect the accuracy of learned models?
Bias will cause systematic errors in parameter estimates internal to models (e.g., the split
points of decision trees or the probability density estimates in Bayesian nets and na�ve
Bayesian classifiers). The effect of attribute bias will be particularly pronounced when
training and test sets differ in size, because attribute values in each will be biased to dif-
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fering degrees. For example, object sampling for 10-fold cross-validation would produce
training sets with (on average) 90% complete subgraphs, but test sets with subgraphs that
are only 10% complete. Increased variance due to subgraph fragmentation will act as a
type of attribute noise, which can substantially reduce the accuracy of models (Quinlan
1986). Together, these fragmentation effects indicate that object sampling will produce
unrepresentative samples and that alternatives to objects sampling should be strongly
considered.

Subgraph Sampling

Subgraph sampling guarantees that entire subgraphs appear within specific samples. Re-
call that we defined subgraphs as a single core object and all peripheral objects necessary
to construct a given set of relational attributes for the core. Sampling entire subgraphs
preserves the association between each core object and all the peripheral objects neces-
sary for accurate calculation of attributes.

Table 2 lists a generic algorithm for subgraph sampling. The algorithm first assigns sub-
graphs to prospective samples, and then incrementally converts prospective assignments
to permanent assignments only if the subgraphs are separated from subgraphs already
assigned to samples. Several possible definitions of separation are discussed in the next
section. This conversion from prospective to permanent samples is done m items at a
time, where the value of m varies by sample to allow creation of samples of unequal
sizes.

Table 2: Algorithm for Subgraph Sampling

Identify all subgraphs Si

Create prospective samples P1, P2,É, Pn, and randomly assign each
subgraph to one sample

Create final samples F1, F2,É, Fn, and initialize each to the empty
set.

Loop until at least on Pj is empty

    For each prospective sample Pj

        Do until mj subgraphs moved to Fj

        or Pj empty

           Select subgraph Sij from Pj

           If separate(Sij,S*k) for all jk,
           then move Sij from Pj to Fj,
           else discard Sij from Pk,

Return final samples F1, F2,É, Fn

Two features of the algorithm are worthy of special note. First, the algorithm enforces
separation between subgraphs in different samples to promote statistical independence.
As sampling progresses, subgraphs are discarded if they are not separate from subgraphs
already assigned to another sample. This feature of the algorithm is intended to prevent
specific types of relational autocorrelation among instances in different samples. Three
different criteria for subgraph separation are discussed below.

A second feature of the algorithm Ñ the random assignment of subgraphs to Òprospec-
tiveÓ samples Ñ also promotes statistical independence. The algorithm either makes a
prospective assignment permanent, or discards the subgraph. An alternative algorithm
would search for an assignment of permanent labels to subgraphs that the maximizes
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number of subgraphs assigned to each sample. This approach would maximize sampling
efficiency (one of the three goals of sampling outlined above).

However, this approach to maximizing sampling efficiency reduces the statistical inde-
pendence of multiple samples. Consider how such an ÒoptimizedÓ algorithm would be-
have when confronted with a data set consisting of two disjoint (or nearly disjoint) sets of
relational data. Sampling efficiency could be optimized by filling one sample entirely
with objects from one disjoint set, and filling another sample with objects from the other
set. If the statistical characteristics of one of the disjoint sets did not mirror the character-
istics of each other, then accuracy estimates of learned models will be biased downward.

We encountered precisely this problem when sampling relational data about the industrial
structure of the banking and chemical industries (Neville and Jensen 2000). Our task was
to create classifiers that predicted the industrial sector of a company (banking or chemi-
cal) based on the companyÕs intrinsic and relational attributes. When we created training
and test samples for this task, we attempted to optimize sampling efficiency, but we en-
countered great difficulty obtaining samples with roughly equivalent distributions of the
class label. Several of our relational attributes involved companies linked through officers
and directors. Officers and directors often link to multiple companies (e.g., an officer of
one company and a director of two others), but they almost always stay within a single
industry (their area of expertise). As a result, attempting to optimize sampling efficiency
harmed statistical independence because it tended to produce training and test samples
drawn from different industrial sectors. For this reason, the subgraph sampling algorithm
in Table 1 assigns prospective samples randomly and then either confirms that assign-
ment or discards the subgraph. In addition, we stop assigning subgraphs to samples as
soon as one of the set of prospective classes has been exhausted.

Subgraph sampling is similar to snowball sampling, a sampling technique used in social
network analysis (Goodman 1961). In snowball sampling, a single seed object is inserted
into a sample, and then all its neighbors are inserted, and then all those objectsÕ neigh-
bors, and so on until a desired sample size (or a specified network boundary) is reached.
Snowball sampling was developed for use with homogeneous relational data where all
objects have the same type (e.g., data where all objects are persons and all links represent
acquaintanceship or telecommunications data where all objects are phone numbers and
all links are calls). In ORN learning applications, however, objects can have heterogene-
ous type. Simple snowball sampling could still fragment subgraphs at the boundaries of a
sample. Subgraph sampling avoids this fragmentation by accounting for the different
roles of core and peripheral objects in attribute calculation.

Subgraph sampling also resembles techniques that construct samples from a small num-
ber of completely disconnected graphs. For example, some experiments with WEBKB
train classification models on pages completely contained within a single website, and
then test those models on pages from another website with no links to the training set.
This approach exploits a feature of some websites Ñ heavy internal linkage but few ex-
ternal links. Similarly, some work in ILP constructs samples from sets of completely dis-
connected graphs (e.g., individual molecules or English sentences). This approach are
possible only when the domain provides extremely strong natural divisions in the graphs,
and this approach is only advisable where the same underlying process generated each
graph. In contrast, subgraph sampling can be applied to data without natural divisions.
Where they exist, subgraph sampling will exploit some types of natural divisions. Where
they do not exist, logical divisions among subgraphs can be created that preserve the
ability to accurately calculate relational attributes and yet preserve the statistical inde-
pendence among samples.

18



Determining Subgraph Separation

The algorithm for subgraph sampling (Table 2) depends on the predicate separate(Si,Sj)
which indicates whether two subgraphs consist of disjoint sets of objects. We differenti-
ate among three criteria for determining subgraph separation. The criteria are differenti-
ated by the degree to which elements of the two subgraphs are separated. Figure 2 shows
the criteria schematically. Informal descriptions and formal definitions are given below.

A B

A B

A B

A,B

Maximal

Moderate

Minimal

Core Object Peripheral  Object

Figure 2: Three types of subgraph separation. Subgraphs of core objects A and B are in
different samples.

Minimal separation specifies only that subgraphs in different samples have distinct cores,
but allows peripheral objects of subgraphs in one sample to appear in the periphery or
core of subgraphs in another sample.1 That is, for all i,m,n,x,y, where xy,

core O S core O Si mx i ny( , ) ( , )→ ¬

Minimal separation specifies that a single object cannot serve as the core object of a sub-
graph in more than one sample. This criterion mirrors the constraint on traditional iid
sampling, where an instance cannot appear in more than one sample. However, it allows
both core and peripheral objects in one sample to appear as peripheral objects in another
sample. Minimal separation was used the experiment discussed in Section 2, and thus
results obtained using this sampling technique can be affected by relational autocorrela-
tion. That said, minimal separation provides 100% sampling efficiency, because all pos-
sible core objects can appear in a sample.

                                                            
1 For ease of explanation, we assume that a single object never serves as the core object of two or

more subgraphs within a single sample.
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Moderate separation adds the condition that the core object of each subgraph is distinct
from all peripheral objects in subgraphs of other samples, but still allows peripheral ob-
jects of subgraphs in one sample to appear as peripheral objects of subgraphs in another
sample. That is, for all i,m,n,x,y, where xy,

core O S core O S

core O S periphery O S
i mx i ny

i mx i ny

( , ) ( , )
( , ) ( , )

→ ¬
→ ¬

Moderate separation can provide 100% sampling efficiency if no links directly connect
core objects, or if such links exist, but are not used to create relational attributes. For ex-
ample, the movie data contain almost no direct links between movies (remake-of links are
the only exception). Thus, judicious creation of relational attributes could allow 100%
sampling efficiency even with moderate separation.

Maximal separation adds the condition that the peripheral objects of each subgraph are
distinct from the peripheral objects of subgraphs in other samples. Thus, in maximal
separation, objects of subgraphs in one sample never appear as objects of subgraphs in
another sample. That is, for all i,m,n,x,y, where xy,

core O S core O S

core O S periphery O S

periphery O S periphery O S

i mx i ny

i mx i ny

i mx i ny

( , ) ( , )
( , ) ( , )

( , ) ( , )

→ ¬
→ ¬

→ ¬

or, more simply,

in O S in O Si mx i ny( , ) ( , )→ ¬

In contrast to minimal and moderate separation, there is no sharing of objects among
samples and thus there is no opportunity for Òinformation leakageÓ between the training
and test sets. However, maximal separation can exact a heavy toll in terms of sampling
efficiency. For populations with even a small number of highly connected objects that are
used in relational attributes, this approach can become untenable. For example, the movie
data contain a small number of studios that link to hundreds of movies. We explore this
problem in more detail in the experiments below.

5. Evaluation

We conducted experiments using the movie data and subgraphs of radius r=1 (movies
and all objects directly linked to them). Using these subgraphs, samples were constructed
for each of the three different separation criteria.

Sampling Efficiency

To evaluate the sampling efficiency associated with different separation criteria, we con-
ducted experiments using the movie data. We selected 8,212 movies from the top 20 gen-
res, and created subgraphs of radius r=1 (movies and all objects directly linked to them)
and r=2 (all r=1 objects and objects directly linked to them). For each set of subgraphs,
we applied subgraph sampling to construct equal-sized training and test sets using each of
the three separation criteria.
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Figure 3: Sampling efficiency using subgraph sampling with different separation criteria
and different-sized subgraphs.

The sampling efficiency in each of the six cases is shown in Figure 3. Minimal separation
is perfectly efficient for the movie data, because no two subgraphs have the same core
object. Moderate separation produces only a slight drop in efficiency for r=1 because two
movies that are remakes cannot appear in different samples. As expected, moderate sepa-
ration for r=2 and maximal separation for r=1 and r=2 produce far larger drops in effi-
ciency.

These results show the best case of sampling efficiency, because subgraphs were placed
into only two samples. In cases where a larger number of independent samples are
needed (e.g., 10-fold cross-validation), sampling efficiency would be far lower because
each subgraph in any one sample would have to be separate from a much larger percent-
age of all other subgraphs (e.g., 90% in 10-fold cross-validation, rather than 50% in 50/50
sampling).

Relational Autocorrelation

As outlined in the example in Section 2, we constructed classifiers using DirectorLast-
Name as the sole attribute. For each pair of training and test sets, we constructed classifi-
ers on the training set and estimated their accuracy on the test set. Figure 4 shows the
results for two types of class label. Each point is an average of five trials. Standard de-
viations are less than 0.01 for minimal and moderate and less than 0.03 for maximal. Ac-
curacy for the best default classifier (genre = drama) is 24%. The default accuracy is
shown in the figure with a dotted line.

The upper line shows the accuracy of the classifier on the actual class label. Accuracy on
test sets generated using minimal and moderate separation is approximately 40%, but
accuracy drops to default when maximal separation is used. In samples generated with
maximal separation, directors never occur in both training and test sets, and thus the
model cannot take advantage of relational autocorrelation.

The lower line in Figure 4 shows the accuracy of the classifier on versions of the data sets
with randomized class labels. The class labels for these sets were artificially generated by
randomly sampling from the probability distribution of the actual class label. Thus, the
randomized class labels are independent of any attribute (including DirectorLastName),
and will not exhibit relational autocorrelation. In this case, the classifiers have signifi-
cantly reduced accuracy when evaluated on samples generated using minimal and moder-
ate separation.
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Figure 4: Estimates of test set accuracy of classifiers using subgraph sampling with dif-
ferent separation criteria. All models use the DirectorLastName attribute. Results for
predicting the actual class are elevated when samples are generated with Minimal and
Moderate separation. Results for predicting a randomized class label are depressed due
to overfitting.

This effect is due to traditional overfitting. The na�ve Bayes classifier estimates
p(class|DirectorLastName), and these estimates are often based on very few values. This
was not a substantial problem in the non-randomized data, because class distributions
were generally highly skewed toward one value. In the randomized case, however, distri-
butions are more uniform. As a result, the classifier sometimes selects the non-default
class as the most probable class, thus reducing accuracy.  When samples are generated
using maximal separation, however, the value of DirectorLastName in the test set are
almost always missing from the model, and the classifier then falls back on its default
estimate of the probability distribution over the class labels, and selects the most probable
class.

7. Discussion and Future Work

Relational autocorrelation is an intriguing and potentially very useful characteristic of
relational data. We are exploring how it can be explicitly incorporated into probabilistic
models, learned directly from data, and effectively evaluated. In addition, we are investi-
gating how relational autocorrelation may affect evaluations of existing techniques for
learning from relational data. Given that it is such a common feature of relational data
sets, relational learning techniques that are prone to overfitting could inadvertently mis-
take autocorrelation for other types of statistical associations.
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Abstract. Several techniques for learning statistical models have been developed recently by
researchers in machine learning and data mining.  All of these techniques must address a
similar set of representational and algorithmic choices and must face a set of statistical
challenges unique to learning from relational data.

Introduction

Recent research projects in two closely related areas of computer science — machine learning
and data mining — have developed methods for constructing statistical models of network data.
Examples of such data include social networks, networks of web pages, complex relational
databases, and data on interrelated people, places, things, and events extracted from text
documents. Such data sets are often called "relational" because the relations among entities are
central (e.g., acquaintanceship ties between people, links between web pages, or organizational
affiliations between people and organizations).1

These algorithms differ from a substantially older and more established set of data mining
algorithms developed to analyze propositional data. Propositional data are individual records,
each of which can be represented as an attribute vector and each of which are assumed to be
statistically independent of any other. For example, a propositional data set for learning medical
diagnostic rules might represent each patient as a vector of diagnostic test results, and analysis
would assume that knowing the disease of one patient tells you nothing about another patient. In
contrast, analysis of a relational representation of the same data would retract this latter
assumption and add information about familial relationships, workplace contacts, and other
relationships among patients that might influence their medical status.

The handful of data mining techniques that have been developed recently for relational data
include probabilistic relational models (PRMs) (Friedman, Getoor, Koller, and Pfeffer 1999),
Bayesian logic programs (BLPs) (Kersting and de Raedt 2000), first-order Bayesian classifiers
(Flach and Lachiche 1999), and relational probability trees (RPTs) (Jensen and Neville 2002). In
each of these cases, both the structure and the parameters of a statistical model can be learned
directly from data, easing the job of data analysts, and greatly improving the fidelity of the
resulting model. Older techniques include inductive logic programming (ILP) (Muggleton 1992;
Dzeroski and Lavrac 2001) and social network analysis (Wasserman and Faust 1994).

For example, we have employed relational probability trees (RPTs) to learn models that
predict the box office success of a movie based on attributes of the movie and related records,
                                                            
1 This meaning of "relational" should be distinguished from the more restrictive meaning of "data stored in relational databases."

While relational databases can represent relational data, relational data can also be represented and accessed in other ways.
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including the movie's actors, directors, producers, and the studios that made the movie. We have
also analyzed relational data in other ways to predict fraudulent cell phone use based on the
calling patterns of individual phone numbers. Finally, we have produced models that predict the
function and location of proteins in a cell based on network of interactions with other proteins.

Many of these techniques for relational learning share a common set of statistical challenges
and design issues. In this paper, we survey these issues, using examples from our work on
PROXIMITY, an integrated system for relational learning, and an algorithm for learning RPTs that
we have incorporated into PROXIMITY. For each issue, we briefly discuss our design choices in
PROXIMITY, and point to alternative approaches used by other systems.

We begin by describing a specific data set and an example analysis task — predicting the
box-office receipts of movies — that we use throughout the remainder of the paper. Next, we
describe some of the basic features of PROXIMITY and our approach to querying data and learning
RPTs. The next two sections discuss a set of representational and algorithmic choices made by
the different techniques and a set of statistical issues unique to relational data. We finish with
some brief conclusions.

Example Data and Analysis Task

Consider the relational data shown schematically in Figure 1. The data consist of movies and
associated objects including people (who act in, produce, or direct the movies), organizations
(studios), events (releases of the movie), and other objects (awards). These objects are connected
in the ways that you would expect (e.g., actors are linked to movies they act in) and in some
occasionally unexpected ways (e.g., movies are linked directly to other movies that are remakes).
In addition to the high-level structure of the database shown in Figure 1, the database contains
attributes associated with each object, including the titles and genres of movies, the names and
ages of persons, and the countries and box-office receipts of movie releases.

The data are drawn primarily from a large online resource, the Internet Movie Database
(www.imdb.com) that makes its data public for research and other non-commercial purposes. In
addition, we have added other data drawn from the Hollywood Stock Exchange (www.hsx.com),
an artificial market where players trade in stocks that track the relative popularity of movie
actors.

The data are voluminous, consisting of over 300,000 movies, 650,000 persons, and 11,000
studios. Those objects are connected by over 2.3 million acted-in links, 300,000 directed links,
and 200,000 produced links. The available data on movies vary widely. For example, not all
movies have releases, and HSX data are only available for a small percentage of actors in IMDb.
Data are more complete for more recent movies and persons.
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Figure 1: Example schema for data from the Internet Movie Database.

The movie data support a variety of interesting predictive modeling tasks. We have already
mentioned one — predicting the opening weekend box office receipts of a movie — and we will
use this task as an example throughout the paper. Specifically, we will focus on predicting a
probability distribution over a simple binary attribute of movies — Does the movie make more
than $2 million in its opening weekend? We will call this attribute receipts.

We could attempt to predict other attributes of objects (e.g., a movie's genre or an actor's
gender) or attributes of links (e.g, the type of a link between a person and a movie) with
PROXIMITY. In addition to these, other types of prediction tasks are certainly possible. One could
attempt to learn models that predict missing links between objects. For example, reviewers
sometimes call a movie a "crypto-sequel" when it stars the same actors and has a similar plot line
as another recent movie, but does not explicitly tie the two storylines. For example, the 1998
movie "You've Got Mail" starring Tom Hanks and Meg Ryan was said to be a crypto-sequel to
the 1993 movie "Sleepless in Seattle" (as well as a remake of the 1940 movie "Shop Around The
Corner" starring James Stewart and Margaret Sullavan). Given enough examples of crypto-
sequels, a data mining algorithm could learn a predictive model from the movie data. Recent
work by Getoor, Friedman, Koller, and Taskar (2001) has created models that predict the
existence of missing links.

One could also attempt to learn models that predict an attribute of a subgraph, rather than
only a single object or link. For example, the emergence of a highly paid Hollywood movie star
may consist of a set of successful movies in which the actor had a starring role and one or more
awards. Models of this pattern would consist of many objects and links, combined in a particular
temporal sequence.

In this paper, we will focus almost exclusively on the task of learning probability
distributions over the values of attributes of objects and links. While predicting link existence
and classifying subgraphs are extremely interesting problems, the techniques learning
probabilistic models for these tasks are much less numerous and much less well-developed than
for simple attribute modeling.
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One important input to relational learning algorithms is a schema or interpretation of the
data that specifies a type system over the objects and links in the data. For example, Figure 1
above specifies one schema for the movie data, but others are possible. For example, an
alternative schema might specify people as either actors, directors, or producers. Figure 2
provides a hierarchy of possible object types as well as two possible families of schemas
constructed from those object types (a full schema would also specify a set of link types). Such a
hierarchy is sometimes called an ontology (Gruber 1993).

Figure 2: An example ontology of movie objects.

Querying and Learning

To address learning tasks of this kind, our research group is constructing PROXIMITY — a system
for machine learning and data mining in relational data. The system is designed as a framework
within which a variety of analysis tools can be used in combination. At the foundation of
PROXIMITY is a graph database for storing semi-structured data that can be represented as a
graph. The database can be accessed by tools for querying data, sampling data, and calculating
attributes that depend partially or entirely on network structure (e.g., measures drawn from social
network analysis). Sampled data can then be analyzed with tools that construct statistical models.
Finally, all these tools can be called from a scripting language interface. In addition to these
components, we are developing additional components for clustering, graph partitioning, and
additional types of statistical modeling.

In this paper, we will focus on a relatively simple combination of two tools — our query
language and one of our learning algorithm. The query language is a visual language for
expressing queries to the graph database. The learning algorithm constructs relational probability
trees (RPTs), a type of probabilistic classifier for relational data. The two components work in
concert. The query language is used to extract subgraphs from a large network of data; the RPT
algorithm is used to learn a model that estimates a conditional probability distribution for the
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value of an attribute of a class of objects or links represented in all those subgraphs. That
estimate is conditioned on the attributes of other objects and links in the subgraph.

For example, a query might extract subgraphs consisting of a movie and all directly related
actors, producers, directors, studios, and awards. An RPT could then be constructed to estimate
the probability that a movie makes more than $2 million in its opening weekend (receipts =
True), given attributes of the actors, producers, directors, studios, and awards. Note that different
movies will have different numbers of related objects such as actors and awards. Thus, the
subgraphs could not be represented directly as simple attribute vectors.

Our query language, QGraph, represents queries as graphs with associated attribute
constraints and annotations on vertices and edges (Blau, Immerman, and Jensen 2002). For
example, Figure 3 shows the query described above with a movie and all its related objects. The
numeric annotation [1..] on the actor vertex specifies that a match must have one or more actors,
and that all associated actors should be returned as part of each matching subgraph. Some object
types and link types are left unspecified because of known connectivity constraints in the data.
Matches to the query are shown in Figure 4. Actual names of people, studios, and movies are left
out for simplicity. The first match has three actors and no award; the second has four actors and
no award, and shares an actor and a studio with the first match; the third match has only a single
actor, but won an award. The fact that entire subgraphs are returned as part of a match is a subtle,
yet vital, feature of the language for our purposes. Other languages such as SQL, for example,
can only return a single record as a match, not a record of variable size, such as a subgraph.

Figure 3: QGraph query for IMDb data.
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Figure 4: Matches to the query in Figure 3.

Our learning algorithm for relational probability trees constructs trees such as the one shown
in Figure 5. The tree represents a series of questions to ask about any subgraph returned by the
corresponding query. In this tree, the root node asks whether the movie has more than five actors
born after 1943. If so, the subgraph travels down the left-hand branch to a node asking whether
the movie at the center of the subgraph is a drama. The subgraph continues moving down
appropriate branches of the tree until a leaf node is reached. The leaf nodes contain probability
distributions over the values of the receipts attribute. Leaf nodes in Figure 5 shows the number
of movie subgraphs of each class that reach the leaf, as well as their respective probabilities. The
leftmost pair of numbers indicate the number and probability of movies with opening weekend
box office receipts exceeding $2 million (receipts = True). The second numbers indicate the
converse (receipts = False).

Figure 5: An example relational probability tree (RPT)

Our construction algorithm for RPTs is a recursive partitioning algorithm similar in spirit to
CART (Breiman, Friedman, Olshen and Stone 1984), C4.5 (Quinlan 1993), and CHAID (Kass
1980). However, the RPT algorithm searches over the attributes of different object types in the
subgraph and multiple methods of aggregating the values of those attributes and creating binary
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splits on those aggregated values. For example, for a numeric attribute such as birth year, it
searches over splits such as MEAN(birthyr) > x, PROPORTION(birthyr > x) > y,
MAXIMUM(birthyr) > y, MINIMUM(birthyr) > x, and COUNT(birthyr > x) > y. Our current
approach continues partitioning the training data until a stopping criteria is reached. Our current
stopping criteria uses a Bonferroni-adjusted chi-square test analogous to that used in CHAID.
However, such methods face a variety of problems due to multiple comparison effects (Jensen
and Cohen 2000), and we are exploring the use of randomization tests (Jensen 1992) to better
adjust for such effects.

This two-step approach of querying and then learning is necessary because of the semi-
structured data model that underlies Proximity. In Proximity's graph database, objects and links
are not created with strong type information. Rather, data about each object or link is stored in
zero or more attributes, name-value pairs such as <age, 54> or <genre, comedy>. Even type
information (e.g., person or movie) is stored as an ordinary attribute without privledged status.
As a result, attributes are not constrained to occur in particular combinations, in contrast to more
conventional relational databases, where a static schema defines both type information and the
fields (attributes) corresponding to each entity or relation type. If such structure is needed in
Proximity, it can be imposed by a QGraph query. The labels in a query (e.g., the "movie",
"actor", and other labels in Figure 3) are assigned to the matching portions of a subquery and
remain on those elements for use by other algorithms such as the RPT construction algorithm.
Similarly, we often employ particular schemas (such as the one shown in Figure 1) to aid
communication, but this is a convenience, not a necessity.

This high degree of flexibility imposes a performance penalty for querying. However, such
flexibility is essential for effective machine learning and data mining. First, practical data mining
often involves the creation of many new attributes as a human data analyst tries alternative
methods for understanding and modeling the data. Adding many attributes to a conventional
database would require constant updates to its schema, a costly operation for traditional
relational databases. Second, a particular schema is just one way of interpreting a given data set,
and it can bias analysis in important ways. To enable truly effective data mining, analysts must
be able to change the schema easily, and thus reconceptualize the domain (Jensen & Neville
2002b; Neville & Jensen 2002).

Comparison and Contrast

Techniques for relational learning can be better understood by examining them in the context of
a set of design choices and statistical issues. This section describes several decision choices and
the next section covers a small set of unique statistical issues facing relational learning
algorithms.

Data characteristics

• Network size — Raw size is one of the most obvious methods of characterizing a relational
data set. PROXIMITY has been constructed and evaluated on relatively large networks. The

30



largest data set we have analyzed (on wireless phone fraud) contains nearly 2 million objects
and 7 million links. The complete IMDb data set contains over 1.1 million objects and over 3.1
million links. These fairly large data sets contrast with the relatively small networks typically
examined by work in social network analysis and inductive logic programming.

• Connectivity — The degree of connectivity among different portions of the data graph is
another important characteristic of relational data sets. Our work focuses on networks
consisting of a small number of large connected components. In contrast, much of the work in
ILP and SNA has focused on many small disconnected components, each of which can be
considered a data instance. For example, some work in ILP has analyzed the relational
structure of molecules to predict their mutagenicity (Srinivasan, Muggleton, Sternberg, and
King 1996). Each molecule is considered a single instance for purposes of learning.

• Homogeneity — Many techniques that analyze relational data assume the data consist of
homogeneous objects. Such networks include sets of web pages, phone numbers, or persons
within an organization. In contrast, several recently developed techniques, including our work
on RPTs, can analyze sets of relational data with heterogenous objects, such as movies,
people, and studios that make up the IMDb data.

Task

• Level of relational dependence — The most commonly used modeling techniques from
machine learning, data mining, and statistics analyze independent attribute vectors, thus
assuming that relational dependencies are unimportant, or at least beyond the scope of
analysis. Specialized techniques for spatial and temporal data have been developed that
assume a highly regular type of relational dependence. In contrast, the work discussed here
addresses relational data sets with potentially irregular relational structure, with variation in
the number and type of links among objects, and these variations are assumed to have
significance for modeling.

• Type of task — Nearly all the algorithms discussed here focus on supervised learning. That is,
they attempt to predict the value of some attribute whose true value is known in the data set. In
contrast, some approaches focus on unsupervised learning, where the task is to discern some
unknown structure in the data. Clustering algorithms are a form of unsupervised learning, and
similar work has recently been undertaken for relational data (e.g., Taskar, Segal, and Koller
2001).

• Level of determinism — RPTs, PRMs, and many of the other approaches discussed here
attempt to learn probabilistic models of relational data. However, some techniques are
specially adapted to learning in deterministic domains. For example, such techniques have
been applied to chess, learning grammars for artificial and natural languages, and inducing
computer programs from examples. Most work in inductive logic programming is focused on
deterministic domains, though some recent work extends this work into probabilistic domains
(Dzeroski and Lavrac).
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• Locality of inference — PROXIMITY's combination of querying for subgraphs and learning
based on those subgraphs assumes that all relevant relational information is preserved in the
portion of the entire data set represented in the subgraph. If important information resides on
elements outside the matched subgraph, then the RPT cannot capture it. The subgraph is
assumed to represents the relevant "local neighborhood" of an object (e.g., a movie), and more
global features of the graph are assumed to be unimportant. Similar locality constraints apply
explicitly or implicitly for most techniques, but the degree of these constraints can vary
considerably.

Model Representation and Learning

• Type of model — To date, we have incorporated modeling algorithms into PROXIMITY that
construct conditional or discriminative models. This contrasts with other work focused on
constructing generative models. Generative models define a probability distribution over the
entire space of data instances. For example, for the problem of predicting the receipts of
movies, a generative model would define the probability of all possible movie subgraphs along
with a probability distribution over possible values of the receipts attribute. In contrast, a
discriminative model defines a probability distribution over the values of receipts, given a
particular subgraph. As with other types of Bayesian network models, PRMs are generative
models. As with other types of tree-based models, RPTs are discriminative models. Generative
models have a wider range of uses (such as detecting anomalies in a data set), provide a more
complete description of the dependencies in a data set, and allow for more robust inference in
the presence of missing data. However, their accuracy on purely discriminative tasks is often
lower than models explicitly learned for that purpose, and they can be more difficult to learn.

• Search over model structures — The RPT learning algorithm searches over a wide range of
possible structures for the tree and for the attributes included in the tree. In contrast, some
approaches to relational learning, including first-order Bayesian networks, PROXIMITY's own
relational Bayesian classifer, and other techniques in social network analysis only learn the
parameters for a model with fixed structure and attributes.

• Attribute construction — RPT learning involves a limited form of attribute construction.
Aggregate attributes (e.g., average actor age) are constructed and evaluated when constructing
the tree. Some techniques such as ILP offer far more extensive search of such "constructed"
attributes, greatly expanding the set of possible models that can be learned (Silverstein and
Pazzani 1991). Other techniques do no search whatsoever, relying on the existing attributes on
objects and links.

• Use of background knowledge — Data analysts often have substantial background knowledge
that can greatly assist model construction. Some techniques can used encoded background
knowledge in the learning process. For example, background knowledge in first-order logic
can be used by ILP approaches to speed and improve learning. Similarly, prior probability
distributions can be used in Bayesian learning techniques. To date, PROXIMITY does not
employ any explicit form of background knowledge in its learning algorithms.
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Statistical Issues

Our recent work on relational learning has concentrated on the unique challenges of learning
probabilistic models in relational data. Specifically, we are examining how particular
characteristics of relational data affect the statistical inferences necessary for accurate learning.
We have identified three features of relational data — concentrated linkage, degree disparity, and
relational autocorrelation — and shown how they lead to two pathological behaviors in learning
algorithms.

To explain more fully, the relevant features of relational data are:

• Concentrated linkage — Real relational data sets can show striking non-uniformities in the
concentration of linkage between different types of objects. For example, in our IMDb data,
movies are linked to only a single primary studio, and each such studio is typically linked to
many movies. We refer to this as concentrated linkage (Jensen and Neville 2002a). It contrasts
with other situations where a smaller number of movies link to a single object (e.g., directors)
or where many movies link to many objects of the same type simultaneously (e.g., actors).
Figure 6 shows a schematic of the two situations. We have found concentrated linkage in
many relational data sets. Perhaps the best example is publicly traded companies that each link
to a single accounting firm, of which there are only a very small number.

Figure 6: Concentrated linkage

• Degree disparity — Another characteristic that occurs in some relational data sets is degree
disparity. This condition arises when objects of different classes have widely different
distributions of degree (the number links to objects of a particular type). For example, in
IMDb, we found that US-based studios were systematically linked to a larger number of
movies than foreign studios (p<0.0001). Figure 7 shows degree disparity schematically. We
have found similar degree disparity in other data sets. For example, the number of owners
differs systematically among publicly traded companies in different industries and the number
of hyperlinks differs systematically among different classes of web pages at university web
sites.
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Figure 7: Degree disparity

• Relational autocorrelation — Autocorrelation is the correlation among values of the same
attribute for related objects. For example, temporal autocorrelation occurs when values of a
given attribute (e.g., stock price) at  time t tend to correlate highly with the value of the same
attribute at time t+1. By analogy, we define relational autocorrelation as the correlation
among values of given variable on objects that are nearby in graph space (Jensen and Neville
2002a). For example, the box office receipts of a movie tend to be highly correlated with the
receipts of other movies made by the same director (correlation coefficient = 0.65) but not for
movies starring the same actors (correlation coefficient = 0.17). Figure 8 shows
autocorrelation schematically. We have found many other examples of autocorrelation,
including correlation of the fraud status of interconnected wireless phone numbers and topics
of interconnected web pages.

Figure 8: Relational autocorrelation

These three characteristics of relational data can greatly complicate efforts to construct good
statistical models. Specifically, they can lead to:

• Biased feature selection — Our recent work has shown that high levels of concentrated
linkage and relational autocorrelation can cause data mining algorithms to select models that
have the weakest, rather than the strongest, statistical support from the data (Jensen and
Neville 2002a). This pathology occurs because linkage and autocorrelation combine to reduce
the effective sample size of the data, thus increasing the variance of statistics used to assess the
relatively utility of different components in learned models. Given that learning algorithms
select the best component among many options, they can often select components with high
variance, but low true utility, thus reducing the overall accuracy of the resulting model.

• Spurious correlation — In other work, we demonstrate a pathology associated with building
models that aggregate the values of many objects (e.g., the ages of many actors associated with
a movie). This is a common method for simplifying relational data, and it is used in both RPTs
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and PRMs. When aggregation is used on data with degree disparity and autocorrelation, it can
lead data mining algorithms to include completely spurious elements in their models (Type I
errors) and to completely miss very useful elements (Type II errors) (Jensen and Neville, in
preparation). These errors occur with degree disparity because many aggregation functions
(e.g., Max) will produce apparent correlation between the aggregated values (e.g., maximum
movie receipts) and a class label (e.g., studio location) whenever degree disparity occurs,
regardless of whether movie receipts has any correlation with studio location.

Both of these effects show the problems associated with violating the assumption of
independence among data instances that underlies so many of the techniques common to
machine learning, data mining, and statistical modeling techniques. These results imply that new
approachhes are necessary to extend current techniques for data mining to relational data. We are
developing one potentially promising class of techniques, based on randomization tests and
resampling-based methods. We expect that these computationally intensive statistical procedures
will allow us to adjust for the unique characteristics of a given relational data set, and make
accurate parameter estimates and hypothesis tests. We are incorporating these approaches into
our algorithm for constructing relational probability trees. We conjecture that similar approaches
will need to be incorporated into all accurate techniques for building statistical models from
relational data.

Conclusions

Recent work in machine learning and data mining has made impressive strides toward learning
highly accurate models of relational data. However, little of this work has made good use of
research in other areas, such as social network analysis and statistics. Cross-disciplinary efforts
and joint research efforts should be encouraged to promote rapid development and dissemination
of useful algorithms and data representations. In particular, this work should focus on the unique
statistical challenges raised by relational data.
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Abstract. We propose the Schema-Model Framework, which characterizes algorithms that learn 
probabilistic models from relational data as having two parts:  a schema that identifies sets of 
related data items and groups them into relevant categories; and a model that allows probabilistic 
inference about those data items. The framework highlights how relational learning techniques must 
structure their own learning tasks in ways that propositional learners do not. The framework also 
highlights interesting directions for future research in relational learning.  

1   Introduction 

Several techniques have been developed that learn probabilistic models from data with complex 
relational structure. These include techniques for learning probabilistic relational models (Friedman, 
Getoor, Koller, and Pfeffer 1999), first-order Bayesian classifiers (Flach and Lachiche 1999), and 
relational probability trees (Neville and Jensen 2002). The number of techniques has grown to the 
point that they provide a sufficient basis for generalizations about some aspects of learning 
probabilistic models from relational data.  

In this paper, we do three things. First, we describe the general characteristics of the learning task 
addressed by these techniques. We introduce this characterization only to provide a foundation for the 
second portion of the paper. In this second portion, we propose the Schema-Model Framework, which 
characterizes algorithms that learn probabilistic models from relational data as having two parts— a 
schema that identifies sets of related data items and groups them into relevant categories; and a model 
that allows probabilistic inference about those data items. Third, we discuss several new research 
problems that arise in the context of schemas and models.  

We propose the Schema-Model Framework (SMF) to highlight some of the unique challenges and 
opportunities of learning from relational data, rather than to provide an overarching characterization of 
all aspects of these learning algorithms. The SMF embodies a relatively simple point— techniques that 
learn from relational data must structure their own learning tasks in ways that propositional learners do 
not. The SMF helps identify:  1) new representational and algorithmic elements that are needed to 
learn from relational data; 2) alternative methods used by learning techniques to implement these 
elements; and 3) new directions for research in relational learning.  

D. Jensen and J. Neville (2002). Schemas and models. Papers of the KDD 2002 Workshop on Multi-Relational Data 
Mining.
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The next two sections lay the groundwork for discussing the SMF. These sections can
be skimmed or skipped entirely by readers familiar with techniques for learning from
relational data.  Section 4 introduces the framework, and section 5 presents some new
learning problems that it highlights.  The final section discusses some related and future
work.

2   Probabilistic relational learning
In this section, we attempt to provide a general characterization of learning probabilistic
models from relational data. For the remainder of the paper, we shorten this to "relational
learning" where the reference to probabilistic learning is clear from context.

2.1   Data

A data set D consists of a set of objects and links, D = {O,L}. Objects oi {O generally
represent people, places, things, and events. For example, in the domain of movies, a data
set might contain objects representing movies, actors, directors, producers, studios, and
movie releases.1 Links li { L  represent relations between two or more objects. For
example, in the movie domain, a link might represent the relation
Directed(Director,Movie), Produced (Producer,Movie), or Awarded(Award,Actor,Movie).
As we will discuss below, links need not be binary, though binary links are common. The
term item refers to objects and links, and is denoted e.
An object or link contains a set A of attributes, where |A|x 0. In other work, attributes
are called variables or features of an item. For example, attributes on objects might denote
the age of an actor, the genre of a movie, or the location of a studio. Attributes on links
might denote the salary an actor was paid for acting in a given movie or the role which an
actor played in a movie. For a given item ei, the jth attribute ai,j has a name name(ai,j) and
a value value(ai,j). Items can be characterized by their attribute vector <value(ai,1),
value(ai,2),...value(ai,n)>. For convenience, name(Ai) and value(Ai) represent sets of names
and values, respectively, on the ith item. Attributes with identical names are assumed to
have values of comparable data types. For example, all values of age are assumed to be
integers, and all values of release date are assumed to be dates.
Items typically can be grouped into one or more disjoint subsets of homogeneous type.
For example, objects in the domain of movies could be grouped into persons, movies,
studios, and awards. We do not assume that there is only one "correct" typing system over
                                                            
1 The movie examples presented throughout this paper are drawn from our work with the Internet
Movie Database (www.imdb.com). The IMDb is a large relational datatset that catalogues diverse
information about movies, containing data for 300,000 movies, 700,000 people (e.g. actors,
directors, producers), and 12,000 studios.
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the objects and links represented in the data. Indeed, one system we discuss below
implicitly attempt to learn a useful typing system. That said, databases often have an
initial typing system, and items of a single type within that system often have equivalent
attribute sets, name(Ai) = name(Aj) for all i,j. Typing systems for items are often called an
ontology, particularly when types are organized into a hierarchical structure that allows
generalization about the lower-level entities (e.g., a director is a person and thus has birth
date).
Several nearly equivalent formalisms exist for representing these types of data sets. For
example, data sets could be represented as:
• Graphs — A data set D can be thought of as a directed hypergraph with vertices O and
hyperedges L. The hypergraph may have only one connected component or several
connected components.
• Database tables — A data set D can also be thought of as a relational database with
entities O and relations L. Items of each type would be stored in a separate table with
one field for each attribute.
• First-order logic statements — D can be thought of as a collection of statements in
first-order logic.
For purposes of this paper, we use the formalisms of graph theory and use binary links,
though no restriction to binary relations is implied.2
In contrast to the assumptions underlying of much of propositional learning, attribute
vectors characterizing objects in D are not assumed to be statistically independent or
identically distributed. For example, two movies made by the same director are likely to
be of similar genres and made in similar years.

2.2   Models

Algorithms for probabilistic relational learning have been developed that learn probability
distributions over possible attribute values, possible links, or possible objects. A model
over possible attribute values might predict the box-office receipts of a movie based on
the success of previous movies made by the movie's director, producer, and studio. A
model over possible links might predict the probability that a given actor will star in a
future movie, represented as an acted-in link between the movie object and that actor. A
model over possible objects might predict the probability that a movie will be released in
a particular country, represented as a new release object for that movie (with an
appropriate link to the movie itself).
We focus on models that estimate probability distributions over possible attribute
values, though much of our discussion is also relevant to prediction of links and objects.
The task of estimating probability distributions over the values of a given attribute would
appear to differ little from traditional propositional learning. However, algorithms for
                                                            
2 The apparent limitations imposed by binary links are largely illusory and can usually be escaped
by creating objects to represent more complex relations such as events (see Davidson 1967).
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relational learning typically look beyond the item for which the attribute is defined, to
consider the effect of related objects on the probability distribution. For example, in order
to predict the box-office success of a movie, a relational model would consider not only
the attributes of the movie, but attributes of the actors in the movie and the director,
producer, and studio that made the movie. A model might go even further and consider
attributes of much more "distant" objects (in the sense of a graph neighborhood).
Some algorithms for relational learning estimate a probability distribution over the
values of one or more attributes of item ei given the items in its neighborhood. That is,
P(value(ai,j)|neighborhood(ei)), where neighborhood(ei)  is a set of objects and links
reachable from ei and it is typically less than the entire graph. Others estimate the full joint
probability distribution over a large number of attributes of related objects. Below, we
discuss both types of models.
We divide the set of all attributes A into fixed and inferred attributes. For each fixed
attribute Aj, value(ai,j) is known a priori for each item ei. No inference about the
probability distribution of a fixed attribute is necessary. In contrast, for each inferred
attribute Aj, value(ai,j) is missing for one or more items ei, and the goal of modeling is to
estimate a probability distribution for these missing values. Friedman et al. call these
"fixed" and "probabilistic" attributes, respectively.

2.3   Related work

Probabilistic relational learning is distinct from a set of related learning tasks that appear
superficially similar:
• Traditional inductive logic programming — Traditional ILP systems learn
deterministic models rather than estimating probability distributions over attributes,
links, or objects. Recent developments in stochastic logic programming (Muggleton
2000, Cussens 2001) and Bayesian logic programs (Kersting and De Raedt 2000) are
interesting alternatives to these deterministic models, which adapt ILP techniques to
learn probabilistic first-order models.
• Propositionalization of relational data — A common approach to learning from
relational data is to "propositionalize" the data rather than retain its inherent structure.
The attributes of an item ei can be "pulled back" and recorded as a local attribute of ei.
Then a probabilistic model can be learned from the resulting feature-vector
representation of the data. However, this approach requires foreknowledge of the
correct relational features. It also assumes that the nature of statistical inference is not
changed by the relational structure of the data, an assumption that has been challenged
by recent work showing how the structure of relational data affects parameter estimates
(Jensen and Neville 2002a) and evaluation of learned models (Jensen and Neville
2002b).
• Learning propositional concepts in relational databases — Much of the work on
knowledge discovery in databases addresses how to use techniques from relational
databases to facilitate data mining. This work deals with relational databases, but

40



relatively little of it deals with relational data. Much of this work assumes that data are
propositionalized (see above) or that data are drawn from only a single relation.
• Multiple instance learning — Some recent work has focused on how to learn in tasks
where each data item is a "bag" containing multiple instances and where a positive bag
indicates that one or more of the items it contains is positive. For example, a credit card
account may be a bag of transactions, where some of the transactions in a given bag
may be fraudulent. In relational learning, a data instance can be thought of as an item
surrounded by a neighborhood of other items. However, in relational learning, the other
items only provide context for estimating the probability distribution of the attributes of
a single item, and do not represent multiple instances within a bag.

3   Example Systems

3.1   Probabilistic Relational Models
Probabilistic relational models (PRMs) extend Bayesian networks to support reasoning in
relational domains, allowing the rich relational information to be incorporated into
traditional Bayes net dependency structures. PRMs specify a probability model over a
relational database with a fixed schema. Given a set of objects and the links between
them, a PRM defines a full joint probability distribution over the attribute values of the
objects. Attributes of an object can depend probabilistically on other attributes of the
object, as well as on attributes of objects in its relational neighborhood. PRMs can also
model uncertainty over both object and link existence.
PRMs make use of pre-specified database schemas that describe a fixed set of object
types, each with a set of attributes and an associated set of links. A PRM represents a
probability distribution over possible instances of a given schema, where an instance of
the schema specifies (1) the set of objects of each type, (2) the set of links between the
objects, and (3) the values of all attributes. For a particular skeleton set of objects and
links (with missing attribute information), instantiating a PRM induces an unrolled
Bayesian network model where random variables represent the individual attribute values
of all the objects in the skeleton.
Instead of defining the dependency structure over attributes, as in conventional Bayes
nets, PRMs define a generic dependency structure at the level of object types. Each
attribute Ai associated with object type X is linked to a set of parents that influence the
value of Ai. Parents of A i are either (1) other attributes associated with type X , or (2)
attributes associated with objects of type Y where objects Y are linked to objects X. (PRMs
can also represent dependencies along longer chains of relations but for simplicity we will
limit discussion to direct relations.) For the latter type of dependency, if the relation
between X and Y is one-to-many, the “parent” consists of a set of attribute values. In this
situation, PRMs use standard database aggregation functions (e.g. max, mode, average) to
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map sets of values into single values. Learning a PRM consists of two tasks: learning the
dependency structure, and estimating the parameters of the conditional probability
distributions used to specify the local probability models for an attribute given its parents.

Actor

Movie

Studio

Made

Acted-In

City

Founded

Receipts

Genre

Year

Gender

Age

<MODE>

<MODE>

Fig. 1.  The schema of a relational database in the movie domain and the dependencies among
attributes encoded by a PRM.

For example, figure 1 shows an example of a PRM that could have be learned in the
movie domain. Three types of objects in the schema are represented by boxes: studios,
movies, and actors. Each type has a set of associated attributes represented by ovals.
Links, represented by diamonds, relate studios and actors to movies. Directed arcs
represent the learned dependency structure of a PRM. Dashed lines indicate an aggregated
attribute – multiple actors may star in any particular movie and more than one studio may
be involved in production of each movie. <MODE> annotations on the arcs indicate that
the model uses the most prevalent attribute value from sets while reasoning. The model
outlines the dependency of movie genre on both the year of the movie and the most
prevalent gender of the actors in the movie. The model also shows that genre and most
prevalent studio location influence movie success (box office receipts).

3.2   First-order Bayesian Classifiers

1BC is a simple Bayesian Classifier that builds discriminative models of attributes from
relational data. Examples consist of objects and their relational neighborhood and first-
order features evaluate attributes values of various items in the examples. A probability
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density function is specified for the target class using first-order features, making the
standard naïve Bayes assumption that features are conditionally independent given the
class. As with PRMs, it is assumed that the domain provides a well-defined notion of
object types (individuals), with associated sets of links (structural predicates) and
attributes (property predicates).

Actor

Movie

Studio

Made

Acted-In

City

Founded

Receipts

Genre

Year

Gender

Age

Has<Hollywood,1920>
Has<Hollywood,1910>
Has<NewYork,1985>

Has<Male,25-30>
Has<Female,20-25>

Fig. 2. The schema of a relational database in the movie domain and the dependencies among
attributes encoded by a 1BC model.

1BC is designed to model at varying levels of decomposition. Level-0 does not
decompose the examples at all and uses complex probability estimators over sets and
multisets to model objects with heterogeneous relational neighborhoods in terms of their
components. If there are too few examples to produce accurate probability estimates at
this level, the examples can be decomposed into level-1 elementary features that consider
the items of each example individually. For each original type X and its set of attributes A,
new types are defined for combinations of attributes in A . Boolean features are
constructed for these types which denote whether a particular example contains an item of
the specified type. For example, the feature HasActor<Female,20-25> is true of a movie
example is there exists a female actress in the age range (20,25) starring in the movie. A
level-2 decomposition further subdivides these types by the attributes and constructs
features that reference a single attribute of an item, such as HasActor<Male>.3
                                                            
3 Work by Craven and Slattery (2001) is related to 1BC, but it uses a complementary method.
Rather than use an ILP system to construct features for a Bayesian classifier, Craven and Slattery
use a Bayesian classifier to construct predicates for an ILP system.
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The implementation of 1BC uses Tertius (Flach and Lachiche 2001) to return a set of
interesting first-order features at each level of decomposition, given domain and
background knowledge. These first-order features consist of zero or more links which
reference specific items of an example and attributes of that item. Features are multi-
valued if the links reference an attribute of a single item (e.g. movie) or boolean if the
series of links refer to a set of items (e.g. actors).
Figure 2 shows an example a 1BC model that could be used to classify movie success.
First-order features use the relational context to predict a movie’s box office receipts –
attributes of the movie itself are considered (e.g. genre, year) as well as attributes of
related objects (e.g. studio city and founding year, actor age and gender). Each feature is
used as an attribute in the naïve Bayes formula and the conditional probabilities of
features given class are estimated from the training data.

3.3   Relational Probability Trees

Relational Probability Trees (RPTs) extend standard probability estimation trees to a
relational setting. RPTs are used in PROXIMITY, a relational knowledge discovery system
designed to operate on graph databases.4 The RPT algorithm takes a collection of
subgraphs as input and constructs a probability estimation tree to predict the target class
label. Each subgraph in the collection contains one target object to be classified; the other
items in the subgraph form its relational neighborhood. An RPT encodes a probability
distribution over the class label given attributes of both the target objects and of other
items in the subgraphs.
The subgraphs in the input collection specify the relational neighborhood that will be
considered by the model and their structure defines a typing over items in the collection.
Subgraphs are extracted from a larger graph database using the visual query language
QGRAPH (Blau, Immerman, and Jensen 2001). Queries in the language allow for variation
in the number and types of objects and links that form the subgraphs and return
collections of all matching subgraphs from the database. Objects and links in the returned
collection are named for particular roles that they serve in the matched subgraphs and may
be duplicated across subgraphs if they match in multiple ways. The returned collection is
a view of the graph — subgraph membership defines the relevant local relational context
and names serve to dynamically assign object and link types. After querying, the user
specifies a set of attributes for each type that will be available to the model during the
learning phase.
The RPT induction algorithm searches over a space of relational features involving
attributes of items in the input subgraphs. Relational features are similar to traditional
propositional features in that they identify both an attribute and a way of testing the values
of the attribute. However, relational features may also identify a particular relation (e.g.
ActedIn) that links a single object (e.g. movie) to a set of other objects (e.g. actors). If this
                                                            
4 For additional details on PROXIMITY, see <http://kdl.cs.umass.edu>.
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is the case, the attribute referenced by the feature may belong to the linked objects (e.g.
actor age), and the test is conducted on the set of attribute values on the linked objects.
The algorithm searches over a space of possible item types (e.g. actor), attributes (e.g.
age), and aggregation functions (e.g. count). Each node in an RPT tests a binary relational
feature — for example, whether at least two actors in a movie are over 65.
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<MINIMUM>
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Fig. 3. The schema of a relational database in the movie domain and the dependencies among
attributes encoded by a RPT.

Figure 3 shows the dependencies of an RPT for classifying movie success. The model
has selected three attributes relevant to predicting a movie’s box office receipts. Features
of the model test attributes of the movie (e.g. genre) and attributes of related objects (e.g.
studio founding year, actor gender). Annotations on the arcs indicate the aggregations used
in the features. More specifically, the tree could test whether the earliest founding year of
studios is below a threshold (e.g. <1910) and whether the proportion of actor genders
satisfies some constraint (e.g. females<20%).

4   Schema-model Framework
Each of the learning techniques outlined above has roots in techniques for learning in
propositional data. PRMs extend traditional Bayesian networks, first-order Bayesian
classifiers extend traditional Bayesian classifiers, and RPTs extend techniques from
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probability estimation trees (Provost and Domingos 2000). However, each technique also
requires substantial modification to learn effectively from relational data.
We group these modifications into changes relevant to a schema and those relevant to a
model. The schema addresses how the technique structures relational data for the
modeling algorithm. The model addresses alterations to the modeling technique that
handle the more complex structure of relational data.

4.1   Schema

In contrast to the highly specified task of propositional learning, relational learning raises
new questions. For example, compare learning a model of the probability distribution of a
movie's box-office receipts from propositional and relational data, respectively. In
propositional data, the learner is given a fixed set of attributes intrinsic to each movie. In
relational data, how much of the relational neighborhood around a movie should influence
the probability distribution of a movie's box-office receipts? In propositional data, each
attribute is considered as a separate entity. In relational data, should the attributes of the
movie's director, producer, and actors contribute independently to predicting box-office
receipts, or should we consider some aggregate attributes of all people connected with the
movie? We call the collective answers to these questions a schema.
The schema provides access to an appropriate neighborhood of items that influence the
probability distribution of inferred attributes. Either this neighborhood should include all
items that influence the inferred attributes, or the influence of those items should be
carried through an appropriate inference chain (see below). Second, the schema groups
items into equivalence classes that can be used by the model.
In PRMs, the schema is a provided by a combination of the dependency structure of the
PRM itself, which provides a set of parents for each probabilistic attribute, and the
database schema, which groups objects and links into mutually exclusive and collectively
exhaustive types.5 For the purposes of this discussion, two features of PRMs are
particularly noteworthy. First, the typing system is given by the underlying database, and
cannot be altered without changing the structure of the database.6 Second, the probability
distribution of a given attribute appears to depend only on a given set of parents, but the
inference procedure employed by PRMs allows probabilistic attributes to depend on other
probabilistic attributes whose values are inferred by the model. Such an inference chain
allows the inferred distribution of an attribute to be influenced by attributes beyond its
immediate parents.
In 1BC, the schema is provided by a combination of the structure of the data graph,
which is assumed to consist of disjoint subgraphs representing individual instances, and
                                                            
5 Note that the database schema is related to, but different than the schema for the learning
technique.
6 Other work related to PRMs has dealt with inducing relevant types from relational data (Taskar,
Segal, and Koller 2001)
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first-order features learned by an ILP system. Alternatively, the instance subgraphs could
be formed by some sort of query mechanism, rather than relying on natural divisions of
the data, although this option is not discussed in the literature on 1BC. Note that the first-
order features are not learned with direct reference to their utility to the probabilistic
model, though they are learned rather than being provided a priori.
In RPTs, the schema is provided by the results of a graph query executed prior to
learning the model. The query returns a collection of subgraphs, each of which contains
one target item with the attribute to be modeled. The query also associates names with
items in each subgraph, which can be interpreted as types (e.g., movie, actor, producer,
director, and studio). This approach to providing a schema sits midway between PRMs
and 1BC; the schema is not fixed, but neither is it learned.

4.2   Model

A schema provides substantial additional structure to relational learning tasks, but creating
a probabilistic model in the presence of a schema still raises unique questions. Again,
compare learning a probability distribution of a movie's box-office receipts in the
propositional and relational cases. In propositional data, every instance has an identical
and fixed structure. In relational data, how should we deal with the varying size of the
neighborhood surrounding a given movie? A model of relational data must accurately
estimate probability distributions in the face of this varying structure.
PRMs address this challenge by aggregating over the attribute values of multiple
parents of the same type. For example, if a movie's genre depends on the gender of the
movie's actors, and a movie has five actors, then the PRM would aggregate the five values
of gender with a function such as mode. These aggregation functions appear to be selected
a priori, rather than selected by the learning algorithm itself.
1BC addresses the challenge of variable-sized neighborhoods by using first-order
features that produce boolean values that characterize the neighborhood. For example, a
first-order feature might determine whether an actor with a particular gender and age acted
in the movie. The attribute would be true if one or more actors met the gender and age
criteria. The first-order features are not formed during model learning. Instead, they are
formed prior to learning the Bayes classifier.
The RPT induction algorithm also forms first-order features, but it forms these features
as part of the same process that constructs the tree. The RPT induction algorithm searches
the a space of possible types, attributes, aggregation functions, and thresholds to form
binary predicates such as average actor age < 30. Thus, RPT induction creates similar
types of first-order features as 1BC. RPT induction searches over a larger space of
aggregation functions and thresholds than either PRMs or 1BC, but RPT induction lacks
the ability of 1BC to automatically create long first-order chains of conditions (e.g.,
whether an actor over 30 also starred in an action adventure movie).
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5.  New problems in relational KD  

5.1 Learning schemas  

The quality of any probabilistic model of relational data depends on the features available to the 
modeling technique. In the language of schemas and models, model quality depends on schema 
quality. Ideally, the schema should be learned such that it provides the necessary "raw materials" for 
constructing an accurate probabilistic model.  

First, the schema should provide access to an appropriate neighborhood of items that influence the 
probability distribution of inferred attributes. If the neighborhood is too small, and the influence of other 
relevant items is not carried through an inference chain, we conjecture that the model will have 
increased error due to bias (Friedman 1997) because it cannot represent the influence of some relevant 
items. If the neighborhood is too large, we conjecture that the model will have increased errors due to 
variance (Friedman 1997), because the data used for probability estimates will include irrelevant items 
that merely introduce "noise" that masks the "signal" provided by relevant items.  

Second, the schema groups items into equivalence classes that can be used by the model to form 
relational features. We conjecture that this component of a schema must balance two types of 
variance errors. A schema might group items at a level of detail that is either too fine or too course. For 
example, in the movie domain, a schema might designate actors, directors, and producers as different 
types of objects, when the aggregate level of experience of all persons associated with a movie is the 
best predictor of the box-office success of a movie. Alternatively, a schema could designate actors, 
directors, and producers as "people" when the experience of directors and producers alone are the 
best predictors of success.  

None of the techniques discussed above provides an entirely satisfactory solution to determining 
the correct schema. PRMs take the schema as given, based on the structure of the database. 1BC 
learns a set of relational features, but without regard to the effect of those features on the quality of the 
probabilistic model learned. RPTs assume a pre-specified schema, allowing alternative queries to be 
used, but not supporting any automated exploration of the space of possible schemas. 

 
5.2 Alternative schemas  

The relatively simple schemas used by current approaches do not exhaust the potential types of 
schemas that might be useful for learning. For example, PRMs and RPTs currently assume a single 
set of mutually exclusive and collectively exhaustive types. Alternatives to this approach include: 1) 
probabilistic schemas, where each item is characterized by a probability distribution over several possible 
types; 2) overlapping schemas, where each item can have multiple types; and 3) multi-resolution schemas, 
where each item is in a set of types of increasing generality. Further, it is not clear that one  

 
 



schema is appropriate for learning all probability distributions. This is particularly relevant
to PRMs, which might benefit from learning different conditional probability distributions
with different schemas.

5.3   Learning models

Finally, a variety of challenges remain in learning accurate probabilistic models from
relational data. In related work (Jensen and Neville 2002a, 2002b), we have shown how
common characteristics of relational data can complicate learning and evaluating
relational models. Specifically, high levels of linkage and autocorrelation in relational
data can cause learning algorithms to systematically prefer attributes with the least
supporting evidence. Similarly, these characteristics of relational data can cause
evaluations of learned models to vastly overestimate the utility of those models. In
addition to these, we suspect that other statistical challenges will emerge in the next few
years, as we gain experience with learning probabilistic models from relational data.

6   Related and Future work
Related work on Bayesian logic programs (BLPs) (Kersting and De Raedt 2000) has
characterized the expressivity of several probabilistic models, including Probabilistic
relational models (PRMs) (Freidman et. al 1999), relational Bayesian nets (RBNs) (Jaeger
1997), and probabilistic logic programs (PLPs) (Ngo and Haddawy 1997).  Kersting and
De Raedt compared these three types of models with BLPs and investigated the
relationships among the various knowledge representations. They outlined a chain of
positive inclusion for the four types of models, from PRMs (least expressive) to RBNs, to
PLPs, to BLPs (most expressive).  Instead of focusing on model representation, the SMF
relates systems based on aspects of model learning. At the outset of our work on the SMF,
PRMs were the only type of model considered by Kersting and De Raedt for which
learning had been investigated. Consequently, we limit the initial discussion in this paper
to PRMs. However, recent work on Bayesian logic programs (Kersting and De Raedt
2002) has outlined methods to learn both the parameters and structure. In future work, we
hope to incorporate BLPs into the SMF.
For simplicity, our work was limited to systems that model degrees of belief over
individuals (Halpern 1990). Halpern outlines two types of probabilistic structures in his
analysis of first order logics of probability. The first type of structures represent subjective
probabilities concerning particular individuals (e.g. any given bird is likely but not certain
to fly), modeling probabilities over possible worlds. The second type of structures
represent qualitative statistical statements (e.g. most birds fly), modeling probabilities
over the domain. The systems described in this paper are, in Halpern's notation, Type I
models. However, there is no reason for the schema-model framework to be limited to
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Type I models. Work in Type II probabilistic models includes stochastic logics programs
(Muggleton 2000, Cussens 2001) and PRISMs (Sato and Kameya 2001). In future work,
we hope to incorporate these systems into the SMF.
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Abstract  

Two common characteristics of relational data sets — concentrated linkage and relational 
auto-correlation — can cause learning algorithms to be strongly biased toward certain 
features, irrespective of their predictive power. We identifythese characteristics, define 
quantitative measures of their severity, and explain how they produce this bias. We show 
how linkage and auto-correlation affect a representative algorithm for feature selection by 
applying the algorithm to synthetic data and to data drawn from the Internet Movie Database.  

1. Introduction  

Recent efforts to learn statistical models from relational data include work on stochastic logic 
programming (Muggleton 2000), probabilistic relational models (Getoor et al. 1999), and relational 
Bayesian classifiers (Flach and Lachiche 1999). Relational data representations greatlyexpand the 
range and applicability of machine learning,but the greater expressive power of relational representa-
tions produces new statistical challenges. Work on relational learning often diverges sharply from 
traditional learning algorithms that assume data instances are statistically independent. Statistical 
independence of instances is among the most enduring and deeply buried assumptions of traditional 
machine learning methods, and it is contradicted by many relational data sets.  

In this paper, we focus on how dependence among the values of a class label in relational data can 
complicate feature selection in methods for machine learning. We define relational feature selection 
and give a simple example of how such a procedure can be biased. We define quantitative measures 
of concentrated linkage (L ) and relational autocorrelation (C'), two common characteristics of 
relational data sets. We show how high values of L and C' reduce the effective sample size of some 
data sets,introduce additional variance, and lead to feature selection bias. To our knowledge, no 
current relational learning algorithm accounts for this bias. We show how to estimate the variance of 
scores and discuss using those estimates to improve feature selection in relational data.  

1.1 Relational Data and Statistical Dependence  

Figure 1 presents two simple relational data sets. In each set, instances for learning consist of 
subgraphs containing a unique object x, an object y, and one or more other objects. Objects x 
contain a class label and objects y contain an attribute that will be used to predict the class label of 
x. Figure 1a shows a data set where objects x and y have a one-to-one relationship and where the 
class labels on instances are independent. Figure 1b shows instances where objects x and y have 
a many-to-one relationship and where the class labels are dependent.
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(a)  
(b)  
 

 

x:  

y: 

p(x,y)  

(Made)  

Figure 1: Example relational data sets with independent instances (a) and dependent instances (b).  

We will spend the majority of the paper considering data sets similar in structure to Figure 1b where 
each subgraph consists of multiple relations and each relation may produce dependencies among the 
instances. For simplicity, our experiments assume that all relations are binary, placing this work 
somewhere between multiple instance learning and full first-order logic (DeRaedt 1998), although the 
statistical effects we investigate appear to affect a wider range of relational learning algorithms.  

————— 1

 Throughout this paper, we assume that all linkages among instances that could introduce statistical 
dependence are represented explicitly as links (edges) in the data graph. 
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1.2  Relational Feature Selection
This paper focuses on feature selection, a component of
many learning algorithms. We define feature as a map-
ping between raw data and a low-level inference. For ex-
ample, a feature for a propositional data set about medical
patients might be temperature > 99°F. In this case, a
feature combines an attribute (temperature), an operator,
and a value. Typically, many features are combined into a
higher-level model such as a tree or rule set. We define
feature selection as any process that chooses among fea-
tures, either by identifying the best, selecting some and
rejecting others, or merely placing a partial or total or-
dering over all possible features. This definition is
broader than some (e.g., John, Kohavi, and Pfleger 1994),
but it emphasizes the central role of feature selection in
machine learning algorithms, including algorithms for
learning decision trees, classification and association
rules, and Bayesian nets. Feature selection is central to
any learning algorithm that forms models containing a
subset of all possible features.
We focus here on relational feature selection. Relational
features are used by models that predict the value of an
attribute on particular types of objects (e.g., the box office
receipts of movies) based on attributes of related objects
(e.g., characteristics of the movie’s director, producer,
actors, and studio). Relational features are similar to the
features described above in that they identify both an at-
tribute and a way of testing the values of the attribute.
However, relational features may also identify a particular
relation (e.g. ActedIn(x,y)) that links a single object x (e.g.
movie) to a set of other objects Y (e.g. actors). If this is
the case, the attribute referenced by the feature may be-
long to the related objects Y (e.g. age), and the test is con-
ducted on the set of attribute values on the objects in Y.
For example, the relational feature:

€ 

Max(Age(Y)) > 65 where Movie(x), Y = {y | ActedIn(x,y)}

determines whether the oldest of the actors in movie x is
over 65. Throughout this paper, we will use f(x) to refer
the value of attribute f for a single object x, and f(X) to
refer to the set of values of attribute f for all x ∈ X.
A central characteristic of many relational data sets is that
two or more objects of one type (e.g., movies) can both be
connected to the same object of another type (e.g., a stu-
dio). We expect that this shared linkage represents some
statistical associations present in the world. That is, linked
objects are not statistically independent.
By examining relational feature selection in general, this
work is relevant to nearly any learning algorithm that
compares and selects among different relational features,
including algorithms for inductive logic programming
(Dzeroski & Lavrac 2001) and algorithms for construct-
ing relational versions of commonly used model repre-
sentations such as rules, trees, and Bayesian networks
(Getoor et al. 1999).

1.3  An Example: Bias in Relational Feature Selection
Given that instances in relational data may not be inde-
pendent, we should examine how such relational structure
could affect feature selection. Below we show how rela-
tional structure and dependence among values of the class
label can bias relational feature selection. To do this, we
created data sets about movies and analyzed them with a
simple algorithm for relational feature selection. Specifi-
cally, we created and analyzed a family of relational data
sets whose relational structure was drawn from the Inter-
net Movie Database (www.imdb.com). We gathered a
sample of 1383 movies released in the United States be-
tween 1995 and 2000. In addition to movies, the data set
contained objects representing actors, directors, produc-
ers, and studios. The data schema is shown in Figure 2.

Movie
receipts

random1
Actor

random2
Director
random5

Producer
random4

Studio
random3

ActedIn Directed

ProducedMade

Figure 2: Schema for the movie data sets. Object and link types
are shown in roman; attributes are shown in italics.
We created a learning task using a single attribute on
movies — opening-weekend box office receipts. We dis-
cretized that attribute so that a positive value indicates a
movie with more than $2 million in opening weekend
receipts (prob(+)=0.55). We call this discretized attribute
receipts and use it as a binary class label. For each of
1000 trials, we also generated a random binary attribute
on each of the five types of objects (movies, studios, ac-
tors, directors, and producers).
In each trial, we applied an algorithm for relational fea-
ture selection, using features formed from the random
attributes. The algorithm uses the following relational
feature for each attribute f(x) and each attribute value af:

≥ 

Mode( f (Y )) = a f
where Movie(x), Y = {y | LinkedTo(x,y)∧Type(y) = t}

which determines whether the modal value of f on the
objects of type t linked to x is equal to af.
The correlation of each relational feature with the class
label was calculated using chi-square and the features
were ranked by their chi-square values. In each trial, we
identified the object type of the top-ranked feature.
Given that all attributes were created randomly, we would
expect an algorithm to select all features with equal prob-
ability, since no attribute is useful for predicting receipts.
However, as shown in the first column of Table 1, fea-
tures formed from studio objects have a much higher
probability of selection than features formed from movies,
actors, directors, or producers.
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Table 1: Probability of feature selection
Object
Type

Receipts
Class Label

Random
Class Label

Studio 0.742 0.214
Director 0.059 0.218
Producer 0.073 0.174
Actor 0.072 0.186
Movie 0.054 0.208

This effect is eliminated if the values of receipts are as-
signed randomly (with the same probability as before)
instead of using the actual values of receipts. These re-
sults are shown in the second column of Table 1. For a
random class label, the algorithm has no bias toward stu-
dio objects. It behaves in the way we would expect, se-
lecting among features formed from different object types
with roughly equal probability. This raises obvious and
intriguing questions: Why does the algorithm prefer ran-
dom features formed from studios, and what does this tell
us about relational feature selection in general?

2.  Linkage and Autocorrelation
Our analysis indicates that bias such as that shown in Ta-
ble 1 occurs when algorithms ignore two common char-
acteristics of relational data — concentrated linkage and
relational autocorrelation. We define these characteristics
formally below. Informally, concentrated linkage occurs
when many objects are linked to a common neighbor, and
relational autocorrelation occurs when the values of a
given attribute are highly uniform among objects that
share a common neighbor. The example in Figure 1b
shows several movies linked to an individual studio and
shows that movies made by the same studio have highly
correlated class labels.

2.1  Concentrated Linkage
We will define concentrated linkage L(X,P,Y) with respect
to two sets of objects X and Y and a set of paths P such
that the relation p(x,y) holds. Paths are composed of k
links and k-1 intervening objects, where k≥1. Each path
represents a series of relations linking an object in X to an
object in Y. For example consider the path from linking
two movies, m1 and m 2, made by the same studio. The
path is formed from two Made links, Made(m1,s1) and
Made(m2,s1). For convenience we treat all links as undi-
rected in order to refer to meaningful sequences of rela-
tionships as paths. We assume that paths in P are unique
with respect to a given (x,y) pair; if two or more paths
between x and y exist in the data, they are collapsed to a
single element of P.
Definition: DyX is the degree of the object y with respect
to a set of objects X. That is, the number of x∈X such that
p(x,y)∈P. For example, DyX might measure, for a given
studio y, the number of movies (X) it has made. !

Definition: Single linkage of X with respect to Y occurs in
a data set whenever, for all x∈X and y∈Y:
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DxY =( and DyX ≥( !

In these cases, many objects in X (e.g., movies) connect to
a single object in Y (e.g., a studio). We use single linkage
as an important special case in future discussions.
Definition: The concentrated linkage L(x,X,P,Y) of an
individual object x (e.g., a movie) that is linked to objects
Y (studios) via paths P is:

2
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..
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∈

−= !

the quantity (DyX -1)/DyX within the summation is zero
when the DyX is one, and asymptotically approaches one
as degree grows, and thus is a reasonable indicator of
L(x,X,P,Y), given single linkage of x with respect to Y.
Because x may be linked to multiple nodes in Y, we define
the average across all nodes yi linked to x, and divide by
an additional factor of D xY to rate single linkage more
highly than multiple linkage.
Definition: The concentrated linkage L(X,P,Y) of a set of
objects X (e.g., all movies) that are linked to objects Y is:

∑
∈
=
Xx X

YPXxLYPXL ),,,(),,( !

Given particular types of linkage, L can be calculated
analytically from the sufficient statistics |X| and |Y|. For
example, in the case of single linkage of X with respect to
Y, L = (|X|-|Y|)/|X|. For example, the data set shown in
Figure 1b exhibits single linkage, so L(X,P,Y) = 0.60.
Propositional data also display single linkage, and be-
cause |X|=|Y|, L(X,P,Y) = 0. Calculations of several types
of linkage are shown for the movie data in Table 2.

Table 2: Linkage in the movie data
Linkage Type Value
L(Movie, Made, Studio) 0.91
L(Movie, Directed, Director) 0.23
L(Movie, Produced, Producer) 0.08
L(Movie, ActedIn, Actor) 0.01
In addition to the movie data, we have encountered many
other instances of concentrated linkage. For example,
while studying relationships among publicly traded com-
panies in the banking and chemical industries, we found
that nearly every company in both industries uses one of
only seven different accounting firms. In work on fraud in
mobile phone networks, we found that 800 numbers, 900
numbers, and some public numbers (e.g., 911) produced
concentrated linkage among phones. Concentrated linkage
is also common in other widely accessible relational data
sets. For example, many articles in the scientific literature
are published in a single journal and many basic research
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articles are cited in single review articles. On the Web,
many content pages are linked to single directory pages
on sites such as Yahoo.

2.2  Correlation and Autocorrelation

We will define relational correlation C(X,f,P,Y,g) with
respect to two sets of objects X and Y, two attributes f and
g on objects in X and Y, respectively, and a set of paths P
that connect objects in X and Y.
Definition: Relational correlation C(X,f,P,Y,g) is the cor-
relation between all pairs (f(x),g(y)) where x∈X, y∈Y and
p(x,y)∈P. !

Given the pairs of values that these elements define, tra-
ditional measures such as information gain, chi-square,
and Pearson's contingency coefficient can be used to as-
sess the correlation between values of the attributes f and
g on objects connected by paths in P. The range of C de-
pends on the measure of correlation used.
We can use the definition of relational correlation
C(X,f,P,Y,g) to define relational autocorrelation as the
correlation between the same attribute on distinct objects
belonging to the same set.
Definition: Relational autocorrelation C' is:

€ 

C'(X, f ,P) ≡ C(X, f ,P,X, f ) where ∀p(x i,x j )∈ P x i ≠ x j !

For example, C' could be defined with respect to movie
objects, the attribute receipts on movies, and paths formed
by traversing Made links that connect the movies to an
intervening studio.
If the underlying measure of correlation varies between
zero and one, then C'=1 indicates that the value of the
attribute for a specific node xi is always equal to all other
nodes xj reachable by a path in P. When C'=0, values of
f(X) are independent. Table 3 gives estimates of relational
autocorrelation for movie receipts, linked through studios,
directors, producers, and actors. For a measure of correla-
tion, Table 3 uses Pearson's corrected contingency coeffi-
cient (Sachs 1992), a measure that produces an easily
interpreted value between zero and one. Autocorrelation
is fairly strong for all object types except actors.
In addition to the movie data, we have encountered many
other examples of high relational autocorrelation. For
example, in our study of publicly traded companies, we
found that when persons served as officers or directors of
multiple companies, the companies were often in the
same industry. Similarly, in biological data on protein
interactions we analyzed for the 2001 ACM SIGKDD
Cup Competition, the proteins located in the same place
in a cell (e.g., mitochondria or cell wall) had highly auto-
correlated functions (e.g., transcription or cell growth).
Such autocorrelation has been identified in other domains
as well. For example, fraud in mobile phone networks has

been found to be highly autocorrelated (Cortes et al.
2001). The topics of authoritative web pages are highly
autocorrelated when linked through directory pages that
serve as "hubs" (Kleinberg 1999). Similarly, the topics of
articles in the scientific literature are often highly autocor-
related when linked through review articles.

Table 3: Autocorrelation in the movie data
Autocorrelation Type Value
C'(Movie,Receipts,Made|Studio|Made) 0.47
C'(Movie,Receipts,Directed|Director|Directed) 0.65
C'(Movie,Receipts,Produced|Producer|Produced) 0.41
C'(Movie,Receipts,ActedIn|Actor|ActedIn) 0.17
Note: We use a the notation a|x|b to denote paths with links
of type a and b and intervening objects of type x.

We have defined relational autocorrelation in a similar
way to existing definitions of temporal and spatial auto-
correlation (see, for example, Cressie 1993). Autocorrela-
tion in these specialized types of relational data has long
been recognized as a source of increased variance. How-
ever, the more general types of relational data commonly
analyzed by relational learning algorithms pose even
more severe challenges because the amount of linkage can
be far higher than in temporal or spatial data and because
that linkage can vary dramatically among objects.
Relational autocorrelation represents an extremely im-
portant type of knowledge about relational data, one that
is just beginning to be explored and exploited for learning
statistical models of relational data (Neville and Jensen
2000; Slattery and Mitchell 2000). Deterministic models
representing the extreme form of relational autocorrela-
tion have been learned for years by ILP systems. By rep-
resenting and using relational autocorrelation, statistical
models can make use of both partially labeled data sets
and high-confidence inferences about the class labels of
some nodes to increase the confidence with which infer-
ences can be made about nearby nodes.
However, as we show below, relational autocorrelation
can also greatly complicate learning of all types of rela-
tional models. As we seek to represent and use relational
autocorrelation in statistical models of relational data, we
will need to adjust for its effects when evaluating more
traditional types of features in these models.

2.3  Discussion

The results reported so far for concentrated linkage and
relational autocorrelation provide important clues to the
behavior reported in Table 1. Figure 3 plots all objects in
the movie data in terms of their linkage and autocorrela-
tion with respect to movies, as reported in Tables 2 and 3.
The contours in the plot delineate regions where the se-
verity of the bias introduced by linkage and autocorrela-
tion is approximately equal. The contours are a 2-D view
of the results reported in Figure 4 (described in detail in
section 3.1). Studios objects in the movie data have the
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highest combination of concentrated linkage and rela-
tional autocorrelation. Features that use studios also show
the greatest bias in the experiments reported in Table 1.
While directors have a higher value of autocorrelation C',
their linkage L is quite low. As we will show in the next
section, when linkage and autocorrelation are both high
for a single type of object, they bias learning algorithms
toward features formed from objects of that type.

C’

L
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Producer
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Figure 3: Relational autocorrelation vs. concentrated linkage

3.  Effects of Linkage and Autocorrelation
Linkage and autocorrelation cause feature selection bias
in a two-step chain of causality. First, linkage and auto-
correlation combine to reduce the effective sample size of
a data set, thus increasing the variance of scores estimated
using that set. Relational data sets with high linkage and
autocorrelation contain less information than an equiva-
lently sized set of independent data. This reduction in
effective sample size increases the variance of parameter
estimates made with the data. Just as small data samples
can lead to inaccurate estimates of the scores used to se-
lect features, concentrated linkage and autocorrelation can
cause the scores of some features to have high variance.
Second, increased variance of score distributions in-
creases the probability that features formed from objects
with high linkage and autocorrelation will be selected as
the best feature, even when these features are random.

3.1  Decreased Effective Sample Size
Below, we prove a special case of linkage and autocorre-
lation decreasing effective sample size, for data exhibiting
single linkage and in which C'=1 and L≥0. Then we ex-
plore a wider array of values for C' and L via simulation.
Specifically, in data sets exhibiting single linkage, and
where L≥0 and C'=1, the variance of scores estimated
from relational features depends on |Y| (the number of
objects with an attribute value) rather than |X| (the number
of objects with a class label). For example, in the movie
data, if autocorrelation of movie receipts through studios
were perfect (C'=1), then the variance of scores for pre-
dicting receipts with a relational feature formed from stu-

dios (e.g., location) would depend on the number of stu-
dios in the sample rather than the number of movies.
Theorem: Given a relational data sample with objects X,
objects Y, paths P, a class label f(x), and an attribute g(y),
where C'=1, DxY=1, and DyX≥1, the sampling distribution
for the scoring function S(f,g) will have the same variance
as it would for a data set with |Y| independent instances.
Proof sketch: Consider the set of independent instances
shown in Figure 1a, where L=0 (and, thus, |X| = |Y|). If we
alter the data set so that L>0 (and, thus, |Y|<|X|), but re-
tain the constraints that C'=1, DxY=1 , and DyX≥1, then
additional objects X will be added, and their correspond-
ing values of f(x) will match the value of other objects X
already connected to a given Y. Such alterations increase
the number of objects |X|, but they do not alter the num-
ber of possible arrangements of values of f and g. That
number remains the same, because the value of f(x) for
additional objects X linked to a given Y is completely de-
termined by the existing value of f(x), given that C'=1.
Each sample for which L>0 , C'=1 , and DxY=1 corre-
sponds directly to a sample for which L=0 though the
latter sample contains fewer objects X. The number of
ways of assigning values of f and g to objects is identical,
the probability of each of these corresponding data sets
remains equal, and the sampling distribution of any scor-
ing function will also be identical. !

In the independent case, the effective sample size N = |X|
= |Y|. In the case where L>0, the effective sample size N =
|Y|<|X|. In less extreme cases, where 0<C'<1, the effective
sample size lies somewhere between |X| and |Y|. In addi-
tion, forms of linkage where DxY>1 complicate estimates
in ways we do not consider formally in this paper, al-
though our experimental results below give some indica-
tions of the effect.
Simulation can demonstrate the effect of varying values
of C' and L. We generated data sets with 1000 objects X
with varying degrees of concentrated linkage to, and rela-
tional autocorrelation through, another set of objects Y (|Y|
varies between 1000 (L=0) and 100 (L=0.9)). We gener-
ated a binary class label on X and a binary attribute on Y,
both drawn from a uniform distribution. At each level of
linkage and autocorrelation, we generated 10,000 sets,
calculated the chi-square score between the attribute and
class label for each set, and then estimated the 95% confi-
dence threshold for the resulting distribution. Because
chi-square increases proportionally with sample size for a
given level of association, we can find the effective sam-
ple size by dividing the 95% critical value of chi-square
for independent data (3.84) by the 95th percentile of the
distribution of simulated scores and multiply by the sam-
ple size (1000). The results are summarized in Figure 4.
In Figure 4, effective sample size drops monotonically
with increases in C' and L. At extreme values of linkage
and autocorrelation, effective sample size is reduced by
almost an order of magnitude.
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Figure 4: Effective sample size decreases with L and C'
We used similar means to gauge the effects of linkage and
autocorrelation on the movie data, and estimated effective
sample sizes for each object type. We examined the dis-
tribution of 200 random relational features formed using
each object type. Autocorrelation and linkage should have
no effect on movies (because movies are not linked di-
rectly to other movies), and the score distributions for
features formed from movies approximately match the
distribution of chi-square expected under the assumption
of independent instances. The other distributions, how-
ever, differ substantially from this expectation. Table 4
shows the effective sample sizes obtained by minimizing
the sum of the absolute difference at all percentiles of the
empirical and theoretical chi-square distributions (other
measures of similarity produced similar results).2 In all
cases, the assumed sample size would be equal to, or
larger than, the number of movies (1383).
Table 4: Effective sample size in the movie data
Object Type

Scaling
Factor

Effective
Sample Size

Studio 0.026 36
Director 0.842 1164
Producer 0.615 851
Actor 0.702 971
Movie 1.000 1383
Figure 5 shows the distributions of scores obtained from
testing the relational features used to construct Table 1.
The dotted line shows the score distribution for studios.
The solid lines show the overlapping distributions for
movies, actors, directors, and producers. These latter dis-
tributions have quite similar variance, but the variance for
features on studios is much higher. For these experiments,
we used a chi-square statistic augmented with a sign, to

—————
2 The effective sample size estimated for studios is almost certainly too
small, given that it is less than the total number of studios in the sample
(128). The sampling distribution obtained for random attributes on stu-
dios had more density in the tails than the theoretical distribution for chi-
square, and thus our similarity measures may not be adequate. We are
exploring alternative methods for estimating effective sample size.

indicate which diagonal of the contingency table con-
tained the most mass (see Sachs 1992). In this way, we
obtained a symmetric scoring function and we were able
to tell if the utility of a given feature changed sign be-
tween data sets.
Evidence in Table 1, Figure 3, Table 4 and Figure 5, all
points to common conclusions. Studios have the highest
combination of linkage and autocorrelation, and the dis-
tributions of scores for features formed from studios dis-
play the highest variance. This variance reduces the ef-
fective sample size, and causes feature selection algo-
rithms to be biased in favor of these features.

3.2  Feature Selection Bias
Given that the scores of some features are estimated with
higher variance than others, why should this lead to a bias
in favor of these attributes? Recent work on the statistical
effects of multiple comparison procedures on score distri-
butions (Jensen & Cohen 2000) provides an explanation.
Features are usually formed by a local search over possi-
ble parameters of the feature. For example, forming the
feature mentioned earlier — Max(Age(Y)) > 65 — could
involve local search over many possible aggregation
functions (Max, Min, Average), operators (>, <, =), and
values ([0,100]). This local search is usually done prior to
feature selection, so only the best feature from each fea-
ture "family" is compared.
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Figure 5: Distributions of random scores
Jensen and Cohen (2000) prove that, if the score of each
member of a feature family is estimated with some vari-
ance, then the estimated score of the best member (the
maximum score) will be a biased estimator of the fea-
ture’s true score. In addition, that bias increases as the
variance of the score distributions increases. Thus, the
estimated score of features formed from objects with high
linkage and autocorrelation (e.g., studios) will be more
biased than those formed from objects with low linkage
and autocorrelation (e.g., actors).
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Results from the movie data clearly indicate high variance
in estimated scores. Figure 7 shows score distributions
based on multiple training/test splits of the movie data,
where one set was used to select the best feature from
each feature family, and the other set was used to obtain
an unbiased score estimate. The scores vary widely, but
features formed from studios have the highest variance.
This experiment also indicates the competing pressures on
feature selection algorithms in the face of high variance.
Some random features on studios have variance suffi-
ciently high to allow them to exceed the scores of weakly
useful features on other objects. However, some non-
random attributes on studios appear to form useful fea-
tures, and any method for discounting high-variance fea-
tures should not discard these.

4.  Estimating Score Variance by Resampling
The first step toward correcting for high variance is to
obtain accurate estimates of variance for each feature. In
this section, we describe and test an approach to estimat-
ing score variance by bootstrap resampling.

4.1  Bootstrap Resampling
Bootstrap resampling is a technique for estimating char-
acteristics of the sampling distribution of a given pa-
rameter by generating multiple samples by drawing, with
replacement, from the original data as if it were the
population (Noreen 1989). Each generated sample is
called a pseudosample and contains as many instances as
the original data set. Some instances in the original data
set will occur multiple times in a given pseudosample,
and others will not occur at all. Resampling can be used to
estimate the variance of a parameter by estimating the
parameter on hundreds of pseudosamples, and then find-
ing the variance of the resulting distribution of scores.
To estimate the variance of a given score distribution us-
ing resampling, we draw links randomly and with re-
placement from all links in P until the number of links in
the pseudosample is equal to the number in the original
data. For example, to estimate variance for a relational
attribute formed from studios, we would sample paths
formed from Made links. Then we create objects based on
the endpoints of the paths in the pseudosample. For ex-
ample, we would create movie and studio objects based
on the movies and studios that form the endpoints of the
Made links in our pseudosample.
In most cases, we create a single object in response to
many paths in the pseudosample with the same endpoint.
For example, we would generally link many movies to a
single studio object we have created for the pseudosam-
ple. In some cases, however, the degree of the resulting
object in the pseudosample exceeds the degree of any
similar object in the original data. In this case, we create
an additional version of that object to keep linkage similar

between the original sample and the pseudosamples. For
example, movies in our data have single linkage to stu-
dios, thus we create extra movies in pseudosamples when
the same link between movies and studios is sampled
twice. The distribution of the scores calculated from many
pseudosamples forms a distribution from which the vari-
ance can be estimated.

|
|
|

|
|

|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|

|
|

|
|

|

Chi−square Score

STUDIO : Experience
STUDIO : Random1
STUDIO : Random0
STUDIO : Random4
STUDIO : Random3

Movie : Producer count
Director : Experience
Producer : Random2

Movie : Random2
Actor : Gender

Director : Random1
Movie : Release season

Movie : Random4
Director : Random0
Director : Random2

Actor : Random1
Actor : Random3
Actor : Random4

Producer : Random1
Producer : Random4

Movie : Random3
Director : Random4

Movie : Director count
Producer : Random3

Movie : Random0
Actor : Random2

Actor : Experience
Producer : Random0

Director : Random3
Movie : Random1
Actor : Random0

Producer : Experience
Movie : Director award

Movie : Comedy
STUDIO : Random2
Movie : Actor award

Movie : Drama
STUDIO : In us
Movie : Action

Movie : Actor count
STUDIO : Movie count

STUDIO : Prevalent genre

0 50 100 150 200 250 300

|
|
|

|
|

|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|

|
|

|
|

|

|
|

|
|
|

|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|

|
|

|
|
|

|
|

|
|
|
|
|

|
|

|
|
|

|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|

|
|
|
|
|

|
|

|
|
|

|
|

|
|

|

|
|

|
|

|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|

|
|

|
|

|
|

|
|

|
|

|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|

|
|

|
|

|
|

|

|
|

|
|
|

|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|

|
|

|
|
|
|

|
|
|

|

|
|

|
|
|

|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|

|
|

|
|

|
|

|

|
|

|
|
|

|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|

|
|

|
|
|

|
|
|

|
|

|
|
|

|
|

|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|

|
|

|
|

|
|

|
|

|
|

|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|

|
|

|
|

|
|
|
|

|

|
|
|

|
|

|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|

|
|

|
|

|
|

|
|

|
|
|
|

|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|
|

|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|

|
|

|
|

|
|

|
|

|
|

|
|
|

|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|

|
|

|
|

|
|
|

|
|

|
|

|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|

|
|
|

|
|

|
|

|
|

|
|

|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|

|
|

|
|

|
|

|
|

|
|

|
|
|
|

|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|

|
|
|

|
|

|
|

|

|
|

|
|

|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|

|
|

|
|

|
|

|
|

Figure 7: Scores of movie features and variance estimates
We evaluated the quality of pseudosamples by comparing
their linkage, autocorrelation, and attribute distributions to
the original sample. The measured quantities remain sta-
ble over all the pseudosamples and closely resemble the
values in the original sample.

4.2  Using Resampled Estimates
While resampling can be used to estimate the variance of
scores for particular features, the use of those estimates to
improve feature selection remains an open problem. Fig-
ure 6 demonstrates the broad outlines of the problem.
Given a set of scores for features and estimates of their
sampling distributions, which features should be selected?
In Figure 6, score B is clearly preferable to A, because it
has both higher expected value and lower variance. How-
ever, scores B and C are not easily ranked because C has a
higher expected value but also a higher variance.
We have tried two obvious ranking schemes without suc-
cess. In the first, we ranked features based on their lower
confidence limits (e.g., 5%). In the second, we grouped
feature distributions into equivalence classes based on
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estimates of prob(A>B) for pairs of distributions. Features
within equivalence classes were ranked based on vari-
ance. We evaluated these ranking schemes on randomly
drawn subsets of movies and compared their rankings to
the ranking on the full data set. We also conducted exten-
sive simulations. Neither scheme significantly improved
feature rankings. This issue of comparing distributions
with unequal variance is a longstanding problem in statis-
tics, and we are continuing to explore alternatives for im-
proving feature selection.

A

B

C

Figure 6: Example score distributions

Conclusions
Based on our work to date, substantial bias is likely to
afflict relational learning algorithms that engage in feature
selection in data sets with high linkage and autocorrela-
tion. Some learning tasks avoid these conditions, either
because the data consist of disconnected subgraphs (e.g.,
molecules) or because the data otherwise lack high link-
age or autocorrelation. However, we have discovered high
linkage and autocorrelation in data sets drawn from many
domains, including web page analysis, fraud detection,
and citation analysis. General-purpose algorithms for re-
lational learning will need to address this source of bias.
We attribute the poor performance of our alternative
ranking schemes to the fact that, given only the data, the
individual score of a given feature remains the best esti-
mate of its utility. Bootstrap resampling appears to pro-
vides accurate approximations to score distributions, but
those distributions only indicate that the true score could
be substantially lower or higher than the estimated score,
with roughly equal probability. We suspect that future
research to avoid feature selection bias will have to con-
sider additional information, such as prior estimates of the
true score. Given such information, priors on the true
scores would receive different updates for the same set of
data, because of the differing effective sample sizes for
each feature. This may provide a better route to using the
distribution information than our experiments to date.
Regardless of the shape of the eventual solution, the bias
associated with linkage and autocorrelation indicates the
importance of maintaining relational data representations,
rather than propositionalizing data. Maintaining a rela-
tional data representation makes it possible to assess the
statistical effects of linkage and autocorrelation, and to
adjust for the resulting bias. In addition, as noted in sec-
tion 2.2, maintaining relational representations allows

inference procedures to exploit relational autocorrelation
to improve the predictive accuracy of models.
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Two common characteristics of relational data sets — concentrated linkage and relational auto-
correlation — can cause traditional methods of evaluation to greatly overestimate the accuracy of 
induced models on test sets. We identifythese characteristics, define quantitative measures of their 
severity, and explain how they produce this bias. We show how linkage and autocorrelation affect 
estimates of model accuracy by applying FOIL to synthetic data and to data drawn from the Internet 
Movie Database. We show how a modified sampling procedure can eliminate the bias.  

Introduction  

Accurate evaluation of learning algorithms is central to successful research in relational learning. The 
most common method for evaluating a learning algorithm is to partition a given data sample into 
training and test sets, construct a model using the training set, and evaluate the accuracy of that model 
on the test set. Separate training and test sets are used because of a widely observed bias when the 
accuracy of models is assessed on the original training set (Jensen & Cohen 2000).  

In this paper, we show how dependence among the values of a class label in relational data can 
cause strong biases in the estimated accuracy of learned models when accuracy is estimated in this 
conventional way. In this section, we give a simple example of how estimated accuracy can be biased. 
In later sections, we define quantitative measures of concentrated linkage (L) and relational 
autocorrelation (C'),two common characteristics of relational data sets. We show how high values of L 
and C' cause statistical dependence between training and test sets, and we show how this 
dependence leads to bias in test set accuracy. In general, current techniques for evaluating relational 
learning algorithms do not account for this bias, although we discuss some special classes of relational 
data sets that are immune to this effect. We present a new family of sampling algorithms that can be 
applied to any relational data set, and show how it eliminates the bias.  

These results indicate that accurate evaluation of relational learning algorithms will often require 
specialized evaluation procedures. The results also indicate that  
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additional attention should be paid to identifying and using relational autocorrelation
to improve the predictive accuracy of relational models. This paper is part of a larger
study of the effects of linkage and autocorrelation on relational learning. A related
paper (Jensen and Neville 2002) shows how linkage and autocorrelation affect feature
selection in relational learning.

Statistical Analysis of Relational Data
Recent research in relational learning has focused on learning statistical models,
including work on stochastic logic programming (Muggleton 2000), probabilistic
relational models (Getoor et al. 1999), and relational Bayesian classifiers (Flach and
Lachiche 1999). However, with the greater expressive power of relational
representations come new statistical challenges. Much of the work on relational
learning diverges sharply from traditional learning algorithms that assume data
instances are statistically independent. The assumption of independence is among the
most enduring and deeply buried assumptions of machine learning methods, but this
assumption is contradicted by many relational data sets.

—
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A

—

B

+

A

++

B

+ — —

A

(a)

(b)

class 
label

attr. 
va luex: (Movie) (Studio) (Other object)y: (Made)p(x,y)

Fig. 1. Example relational data sets (a) five independent instances and (b) five dependent
instances.

For example, consider the two simple relational data sets shown in Figure 1. In
each set, instances for learning consist of subgraphs containing a unique object x, an
object y, and one or more other objects. Objects x contain a class label and objects y
contain an attribute that will be used to predict the class label of x. Figure 1a shows a
data set where objects x and y have a one-to-one relationship and where the class
labels on instances are independent. Figure 1b shows instances where objects x and y
have a many-to-one relationship and where the class labels are dependent.
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We spend the majority of this paper considering data sets similar in structure to
Figure 1b, where each subgraph consists of multiple relations and each relation may
produce statistical dependencies among the instances. For simplicity, all relations in
Figure 1 are binary, but the statistical effects we investigate affect a wider range of
tasks and data representations.

Simple Random Partitioning

Perhaps the most widely used evaluation technique in machine learning and data
mining is the partioning of a data sample into training and test sets. Most sampling in
machine learning and data mining assumes that instances are independent. In contrast,
this paper examines situations where instances are not independent. Methods for
sampling relational data are not well understood. In the relatively few cases where
researchers have considered special methods for sampling relational data for machine
learning and data mining, they have often relied on special characteristics of the data.
For example, some researchers have exploited the presence of naturally occurring,
disconnected subsets in the population, such as multiple websites without connections
among the sites (e.g., Craven et al. 1998). We wish to evaluate classification models
that operate over completely connected graphs. There is also a small body of literature
on sampling in relational databases (e.g., Lipton et al. 1993), but this work is intended
to aid query optimization while our interest is to facilitate evaluation of predictive
models.
The most common sampling technique — simple random partitioning — has been
taken from propositional settings and adapted for use in relational sets such as those
in Figure 1. We define simple random partitioning with respect to two sets of objects
X  and Y and a set of paths P such that the relation p(x,y) holds. We presume that
objects X contain class labels and that objects X and Y both contain attributes relevant
to classifying objects X. Paths are composed of k links and k-1 intervening objects,
where k≥1. Each path represents a series of relations linking an object in X  to an
object in Y. For example consider the path linking two movies, m1 and m2, made by
the same studio. The path is formed from two Made  links, Made(m1,s1) and
Made(m2,s1). For convenience we treat all links as undirected in order to refer to
meaningful sequences of relationships as paths. We assume that paths in P are unique
with respect to a given (x,y) pair; if two or more paths between x and y exist in the
data, they are collapsed to a single element of P.
Definition: Simple random partitioning divides a sample S  of relational
data into two subsamples SA and SB. The subsamples are constructed by
drawing objects X  from S  without replacement and without reference to
paths P and objects Y in S. When an individual object x∈X is placed into a
subsample, some set of objects {y1, y2, ...yn}, such that p(x,yi), are also
placed into the subsample if those objects are not already present. The
object sets XA and XB are mutually exclusive and collectively exhaustive of
objects X in S, but other objects Y may appear in both SA and SB.

Such a techique for creating training and test sets seems a logical extension of
techniques for propositional data. However, it leaves open the possibility that a subset
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of objects Y  may fall into both the training and test set, creating some type of
dependence between the training and test sets.

An Example of Test Set Bias

Given that instances in relational data may share some objects, and thus not be
independent, we should examine how such relational structure could affect accuracy
estimates made using training and test sets. Below we show how relational structure
and dependence among values of the class label can bias estimates of the accuracy of
induced models.
We created data sets about movies and analyzed them using FOIL (Quinlan 1990).
Specifically, we created and analyzed simple relational data sets whose relational
structure was drawn from the Internet Movie Database (www.imdb.com). We
gathered a sample of all movies in the database released in the United States between
1996 and 2001 for which we could obtain information on box office receipts. In
addition to 1382 movies, the data set also contains objects representing actors,
directors, producers, and studios.1 In all, the data set contains more than 40,000
objects and almost 70,000 links. The data schema is shown in Figure 2.

MovieActor Director

ProducerStudio

ActedIn Directed

ProducedMade

Fig. 2. A general data schema for the movie data sets.

For most of the experiments reported in this paper, we limited analysis to just two
classes of objects — movies and studios. This allowed us to greatly reduce the overall
size of training and test sets, thus making them feasible to analyze using FOIL. This
also focused the experiments on precisely the phenomena we wished to study, as
discussed below. Details about the data representation are given in the appendix.
We created a learning task using an attribute on movies — opening-weekend box
office receipts. We discretized the attribute so that a positive value indicates a movie
with more than $2 million in opening weekend receipts (prob(+)=0.55). We call this
discretized attribute receipts and use it as a binary class label. We also created ten
random attributes on studios. The values of these attributes were randomly drawn
from a uniform distribution of five values, and thus were independent of the class
label. Figure 3 shows the schema with movies, studios, and their attributes.
We used simple random partitioning to create (approximately) equal-sized training
and test sets. This divides our sample of 1382 movies in two subsamples, each
containing approximately 690 movies and their affiliated studios. Each movie appears
in only one sample. Each affiliated studio might appear in one or both subsamples,
                                                            
1 Each of the movies is related to one primary studio. For movies with more than one
associated studio, we chose the U.S. studio with highest degree to be the primary, for movies
without any U.S. studios we chose the studio of highest degree to be the primary.
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and would never appear more than once in any one subsample.  However, a single
studio object can be linked to many movies in a given subsample.

Movie
receipts

Studio
r1, r2, ..., r10

Made

Fig. 3. A simplified data schema, with attributes, for the artificial data sets used for experiments
in this section. Attributes denoted r1 through r10 are random attributes.

Given these data sets, we evaluated the ability of FOIL to learn useful models in the
traditional way. We ran FOIL on the training set and evaluated the accuracy of the
resulting models on the test set. Given that attributes on studios were created
randomly, the expected error for the models constructed exclusively from those
attributes should equal the default error (0.55). Deviations from this error represent a
bias, which can be measured by subtracting the measured error ê from the theoretical
error e . Positive bias over many trials indicates that the test set accuracy is
systematically lower than the theoretical error.

0
5
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−0.4 −0.2 0.0 0.2 0.4
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Fig. 4. Distribution of test set bias for FOIL models constructed from random attributes using
(a) the actual class labels and (b) randomized class labels. The distributions were smoothed
using a bandwidth parameter of 0.4.

Figure 4 shows two distributions of bias estimated from 50 different training and
test set partitions. The rightmost distribution (a) results from the experiment described
above. The bias is substantially larger than zero, indicating that the measured error of
FOIL rules on the test set is much lower than the default. The leftmost distribution (b)
results from running the same experiment, except that the values of the class label on
movies (receipts) are randomly reassigned before each trial. This distribution has
almost precisely the expected bias of zero.
These experimental results raise obvious questions: Why does the algorithm appear
to learn from random features formed from studios when the actual class label is used,
but not when the values of that class label are randomly assigned? What does this
result tell us about evaluating relational learners in general?
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Linkage, Autocorrelation, and Overfitting
Our analysis indicates that biases like that shown in Figure 4 result from the
confluence of three common phenomena  in relational learning — concentrated
linkage, relational autocorrelation, and overfitting. Concentrated linkage and
relational autocorrelation create statistical dependence among instances in different
samples, and overfitting exploits that dependence in ways that lead to bias in test set
accuracy. We define concentrated linkage and relational autocorrelation formally
below. Informally, concentrated linkage occurs when many objects are linked to a
common neighbor, and relational autocorrelation occurs when the values of a given
attribute are highly uniform among objects that share a common neighbor. Overfitting
is familiar to machine learning researchers as the construction of complex models that
identify unique characteristics of the training set rather than statistical generalizations
present in the population of all data.
Much of the text of this section is drawn from an earlier paper (Jensen & Neville
2002). However, the definitions are so central to understanding the experiments in
later sections that we present this material again rather than attempting to summarize.

Concentrated Linkage

We define concentrated linkage L(X,P,Y) with respect to the same conditions as
simple random partioning — two sets of objects X and Y and a set of paths P such that
p(x,y).
Definition: DyX is the degree of an object y with respect to a set of objects
X. That is, the number of x∈X such that p(x,y)∈P. For example, DyX might
measure, for a given studio y, the number of movies (X) it has made. !

Definition: Single linkage of X  with respect to Y  occurs in a data set
whenever, for all x∈X and y∈Y:

€ 

DxY =1 and DyX ≥1 !

In these cases, many objects in X (e.g., movies) connect to a single object in Y (e.g., a
studio). We use single linkage as an important special case in future discussions.
Definition: The concentrated linkage L(x,X,P,Y) of an individual object x
(e.g., a movie) that is linked to objects Y (studios) via paths P is:

2

),(
..

)1(),,,( xY
Pyxp
tsy yX

yX DD
DYPXxL ∑

∈

−= !

the quantity (DyX -1)/DyX within the summation is zero when the DyX is one, and
asymptotically approaches one as degree grows, and thus is a reasonable indicator of
L(x,X,P,Y), given single linkage of x with respect to Y. Because x may be linked to
multiple nodes in Y, we define the average across all nodes yi linked to x, and divide
by an additional factor of DxY to rate single linkage more highly than multiple linkage.
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Definition: The concentrated linkage L(X,P,Y) of a set of objects X (e.g., all
movies) that are linked to objects Y is:

∑
∈
=
Xx X

YPXxLYPXL ),,,(),,( !

Given particular types of linkage, L can be calculated analytically from the sufficient
statistics |X| and |Y|. For example, in the case of single linkage of X with respect to Y,
L = (|X|-|Y|)/|X|. For example, the data set shown in Figure 1b exhibits single linkage,
so L(X,P,Y) = 0.60. Propositional data also display single linkage, and because
|X|=|Y|, L(X,P,Y) = 0. Calculations of several types of linkage are shown for the
movie data in Table 2.

Table 2: Linkage in the movie data
Linkage Type Value
L(Movie, Made, Studio) 0.91
L(Movie, Directed, Director) 0.23
L(Movie, Produced, Producer) 0.08
L(Movie, ActedIn, Actor) 0.01

In addition to the movie data, we have encountered many other instances of
concentrated linkage. For example, while studying relationships among publicly
traded companies in the banking and chemical industries, we found that nearly every
company in both industries uses one of only seven different accounting firms. In work
on fraud in mobile phone networks, we found that 800 numbers, 900 numbers, and
some public numbers (e.g., 911) produced concentrated linkage among phones.
Concentrated linkage is also common in other widely accessible relational data sets.
For example, many articles in the scientific literature are published in single journals
and many basic research articles are cited in single review articles. On the Web, many
content pages are linked to single directory pages on sites such as Yahoo and Google.

Correlation and Autocorrelation

We will define relational correlation C(X,f,P,Y,g) with respect to two sets of objects X
and Y, two attributes f and g on objects in X and Y, respectively, and a set of paths P
that connect objects in X and Y.
Definition: Relational correlation C(X,f,P,Y,g) is the correlation between
all pairs (f(x),g(y)) where x∈X, y∈Y and p(x,y)∈P. !

Given the pairs of values that these elements define, traditional measures such as
information gain, chi-square, and Pearson's contingency coefficient can be used to
assess the correlation between values of the attributes f and g on objects connected by
paths in P. The range of C depends on the measure of correlation used.
We can use the definition of relational correlation C(X,f,P,Y,g) to define relational
autocorrelation as the correlation between the same attribute on distinct objects
belonging to the same set.
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Definition:  Relational autocorrelation C’ is:  

C'(X, f , P) = C(X, f ,P, X, f ) where   For All p(xi,xj ) Є P xi ≠ xj  

For example, C' could be defined with respect to movie objects, the attribute receipts on movies, and 
paths formed by traversing Made links that connect the movies to an intervening studio.  
 

If the underlying measure of correlation varies between zero and one, then C' =1 indicates that the 
value of the attribute for a specific node xi is always equal to all other nodes xj reachable by a path in 
P. When C' =0, values of f (X) are independent. Table 3 gives estimates of relational autocorrelation for 
movie receipts, linked through studios, directors, producers, and actors. For a measure of correlation, 
Table 3 uses Pearson's corrected contingency coefficient (Sachs 1992), a measure that produces an 
easily interpreted value between zero and one. Autocorrelation is fairly strong for all object types 
except actors.  
 

In addition to the movie data, we have encountered many other examples of high relational 
autocorrelation. For example, in our study of publicly traded companies, we found that when persons 
served as officers or directors of multiple companies, the companies were often in the same industry. 
Similarly, in biological data on protein interactions we analyzed for the 2001 ACM SIGKDD Cup 
Competition, the proteins located in the same place in a cell (e.g., mitochondria or cell wall) had highly 
autocorrelated functions (e.g., transcription or cell growth). Such autocorrelation has been identified in 
other domains as well. For example, fraud in mobile phone networks has been found to be highly 
autocorrelated (Cortes et al. 2001). The topics of authoritative web pages are highly autocorrelated 
when linked through directory pages that serve as "hubs" (Kleinberg 1999). Similarly, the topics of 
articles in the scientific literature are often highly autocorrelated when linked through review articles.  
 

Table 3:  Autocorrelation in the movie data  
 
Autocorrelation Type     Value  

C'(Movie,Receipts,Made|Studio|Made)   0.47 
C'(Movie,Receipts,Directed|Director|Directed)  0.65 
C'(Movie,Receipts,Produced|Producer|Produced)   0.41 
C'(Movie,Receipts,ActedIn|Actor|ActedIn)   0.17  

Note: The notation a|x|b to denote paths with links of type a and b and intervening objects of type x.  

We define relational autocorrelation in a similar way to existing definitions of temporal and spatial 
autocorrelation (see, for example, Cressie 1993). Autocorrelation in these specialized types of 
relational data has long been recognized as a source of increased variance. However, the more 
general types of relational data commonly analyzed by relational learning algorithms pose even more 
severe challenges because the amount of linkage can be far higher than in temporal or spatial data 
and because that linkage can vary dramatically among objects.  

Relational autocorrelation represents an extremely important type of knowledge about relational 
data, one that is just beginning to be explored and exploited for learning statistical models of relational 
data (Neville and Jensen 2000; Slattery and  

  



Mitchell 2000). Deterministic models representing the extreme form of relational
autocorrelation have been learned for years by ILP systems. By representing and
using relational autocorrelation, statistical models can make use of both partially
labeled data sets and high-confidence inferences about the class labels of some nodes
to increase the confidence with which inferences can be made about nearby nodes.
However, as we show below, relational autocorrelation can also greatly complicate
learning of all types of relational models. As we seek to represent and use relational
autocorrelation in statistical models of relational data, we will need to adjust for its
effects when evaluating more traditional types of features in these models.

Effects of Linkage, Autocorrelation, and Overfitting on Bias
The results reported so far for concentrated linkage and relational autocorrelation
provide important clues to the behavior shown in Figure 4. Studios are the objects in
the movie data that have the highest combination of concentrated linkage and
relational autocorrelation. In this section, we show that, if linkage and autocorrelation
are both high for a single type of object, and an algorithm produces overfitted models
that use attributes on those objects, then the test set error will be biased.

Dependent Training and Test Sets

Given the definition of simple random partitioning in the introduction, we can
examine the statistical dependence of subsamples it produces. We define probind(A,B)
to be the probability that subsamples A  and B are independent.2 Further, we define
probind(A,B|y) to be the probability that subsamples A and B are independent with
respect to a specific object y∈Y, that is where A and B are independent with respect to
objects xi ∈X such that p(xi,y)∈P.

Theorem: Given simple random partitioning of a relational data set S with single
linkage and C'=1:

€ 

probind (A,B)→ 0 as L→1.

Proof: First, consider a sample S composed of independent subgraphs such as those
shown in Figure 1a. In such a sample, L=0 because no x is linked to more than one y,
and probind(A,B)=1 because no object x can fall into more than one sample and there
is no dependence among objects x1 and x2 because L = 0.
Now consider the effect of increasing DyX, the degree of an object y (e.g., a studio)
with respect to objects X  (e.g., movies). For notational convenience, d=DyX.
Increasing d necessarily increases L for a single object x, because for single linkage
L(x,X,P,Y)=(d-1)/d. For any one object y, the samples A and B are not independent if
both contain an object xi, such that p(xi,y). Thus:
                                                            
2 In this paper, we consider the effects of dependence between instances in different
subsamples, but not the effects of dependence among objects within the same subsample.
The latter topic is covered in another recent paper (Jensen and Neville 2002).
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€ 

probind (A,B | y) = b(0,d, p) + b(d,d, p) (1)
where b(m,n,p) denotes the value of the binomial distribution for m successes in n
trials, where each trial succeeds with probability p. Here, for example, b(d,d,p) is the
probability that a given sample (e.g., A) will contain all of the d movies linked to a
given studio y. In the case of simple random partitioning into equal-sized samples,
p=0.5. For high values of d (many objects x are connected to a single object y),
probind(A,B|y) approaches zero. For d=2, probind(A,B|y)=0.5.  That is, there is only a
50% probability that both objects x connected to y will end up in the same sample. For
d=3, probind(A,B|y)=0.25; for d=10, probind(A,B|y)=0.002.
Given that S contains many objects Y, the probability of independence for all
objects y becomes vanishingly small. Specifically:

€ 

probind (A,B) = probind (A,B | y)
y
∏ (2)

For even small samples, probind(A,B) goes quickly to zero as L  increases. For
example, given a sample of 50 instances of X , if d=2 (L=0.5), then
probind(A,B)=3.0x10-8. For d=5 (L=0.8), probind(A,B)=9.1x10-13. For large samples
and L>0, probind (A,B)≈0. !

Not only is the probability of any dependence between A and B high, but the degree of
dependence is very likely to be high. For example, the binomial distribution can be
used to derive the expected number of objects x1 in sample A with a matching object
x2 in B such that p(x1,y) ∈P and p(x2,y) ∈P for some y∈Y with degree d=DyX. The
maximum and expected number of matched pairs of dependent instances is:

€ 

Max(pairs) = d /2 
E( pairs) = min(i,d − i)b(i,d,0.5)

i=,

d∑
(3)

For example, for d=5, the maximum number of pairs is Max(pairs)=2 and the
expected number is E(pairs)=1.56. For d=10, Max(pairs)=5 and E(pairs)=3.77.

How Bias Varies with Autocorrelation, Linkage, and Overfitting
Given dependent training and test sets, it is relatively easy to see how overfitted
models can cause bias in test set accuracy.  One way of characterizing the observed
behavior is that it represents a relational version of the "small disjuncts" problem
(Holte, Acker, & Porter 1989). This problem arises in propositional learning when
overfitted models parse the instance space into sets ("disjuncts") containing only a
few data instances. For example, when a decision tree is pathologically large, its leaf
nodes can apply to only a single instance in the training set. Such models perform as
lookup tables that map single instances to class labels. They achieve very high
accuracy on training sets, but they generalize poorly to test sets, when those test sets
are statistically independent of the training set.
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In the relational version of the small disjuncts problem, models use relational
attributes to parse the space of objects y into sets so small that they can uniquely
identify one such object (e.g., a single studio). If that object is linked to many objects
x where a single class predominates (e.g., receipts = +), then a model that uniquely
identifies that object y can perform well on the training data. If that y also appears in
the test data, then the model can perform well on test data.
Indeed, such overfitting is made more likely by high autocorrelation among the
values of the class label within a given training set. If several objects X in a training
set are all linked to a single object y, and if the class labels of the objects X are highly
correlated, then it is more likely that a learning algorithm will create a model with
components intended to predict precisely these instances than if only a single instance
had this combination of attribute values and class label.
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Fig. 5. Bias increases with linkage (L), autocorrelation (C’), and number of random attributes
(k). Each point represents the average of 20 trials.

As noted above, relational autocorrelation represents an extremely important type
of knowledge about relational data, one that can be exploited to improve accuracy
(Neville and Jensen 2000; Slattery and Mitchell 2000). However, it can also fool
algorithms and evaluation techniques not designed to account for its effects.
For example, consider the results shown in Figure 5. The graphs show how the bias
varies across a wide range of linkage (L), autocorrelation (C’), and potential for
overfitting. To alter this latter characteristic of learning algorithms, we varied the
number of attributes k from one to ten. In each trial, we created synthetic data sets
with 200 objects X and specified values of autocorrelation and single linkage with
objects Y . Each object x was given a class label drawn from a binary uniform
distribution. Each object y was given k attributes, each with a value drawn from a
five-valued uniform distribution. This sample was then divided into equal-sized
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training and test sets using simple random partitioning. We applied FOIL to the
training set, and then evaluated the error of the resulting rules on the test set. For each
combination of L, C’, and k, we ran 20 trials and averaged the bias.
For a given number of attributes k, bias increases dramatically with increasing
linkage L and autocorrelation C’. For high values of k, L , and C’, bias is maximal
(0.5). However, even moderate values of k, L , and C’ produce substantial bias,
confirming the results in the first section.
It is important to note that in the experiments presented above, these overfitted
models are not learning any general knowledge about autocorrelation and linkage. For
example, the FOIL rules learned for the experimental results depicted in Figure 4
contain only clauses of the form:

receipts(A) :- made-by(A,B), studio-attributes(B,C,D,E,F).
That is, they exclusively relate attributes of studios to receipts of movies linked to
them. As noted previously, linkage and autocorrelation represent an important type of
knowledge that could be exploited by a relational learning algorithm. However, most
relational learning algorithms either cannot or do not learn probabilistic models of this
form. The rules formed by FOIL on the synthetic data used in Figure 5 are of a similar
form. The results in Figure 5 show that large bias that can result when algorithms
learn overfitted models from data with strong linkage and autocorrelation.

Subgraph Sampling
Fortunately, this bias can be eliminated by a relatively small change to the procedure
for creating training and test sets. Subgraph sampling guarantees that an object y and
corresponding objects X appear only within a single subsample. This confines any
autocorrelation among the class labels of objects X to a single subsample, and thus
removes the dependence between subsamples due to concentrated linkage and
relational autocorrelation.
We first introduced subgraph sampling of relational data in an earlier paper (Jensen
and Neville 2001). However, we lacked a full understanding of the causes of
dependence between subsamples, and we proposed an extreme form of subgraph
sampling that eliminated all possible duplication of objects between subsamples, even
when class labels were not autocorrelated through all types of objects. Here we
propose a form of subgraph sampling that is far more conservative.
First, consider the special case where linkage and autocorrelation are high for only
one type of object y, and that object exhibits single linkage with objects X. For
example, in the movie data, only studios exhibit both high linkage and high
autocorrelation; other types of objects (actors, directors, and producers) have fairly
low values for one or both quantities. In addition, studios exhibit single linkage with
movies. In this special case, we can partition a sample S based on the objects Y (e.g.,
studios), and then place all objects X in the same subsample as their corresponding y.
A more general partitioning algorithm first assigns objects X  to prospective
samples, and then incrementally converts prospective assignments to permanent
assignments only if the corresponding objects Y for the given x are disjoint from other
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objects Y already assigned to subsamples other than the prospective subsample of x.
In contrast to the approach we proposed earlier (Jensen and Neville 2001), the objects
Y considered during sampling should only be those through which linkage and
autocorrelation is high.3
One feature of the general algorithm is worthy of special note — the random
assignment of objects X to “prospective” subsamples. The algorithm either makes a
prospective assignment permanent, or discards the object. An alternative algorithm
would search for an assignment of objects to permanent subsamples that maximizes
the number of objects assigned to each subsample, thus maximizing the size of
subsamples. However, this approach can induce another form of statistical
dependence among subsamples. Consider how such an “optimizing” algorithm would
behave when confronted with a data set consisting of two disjoint (or nearly disjoint)
sets of relational data. One subsample would be filled entirely with objects from one
disjoint set, and another would be filled with objects from the other set. If the
statistical characteristics of one of the disjoint sets did not mirror the characteristics of
the other, then accuracy estimates of learned models would be biased downward.
Subgraph sampling resembles techniques that construct samples from a small
number of completely disconnected graphs. For example, some experiments with
WEBKB (Slattery and Mitchell 2000) train classification models on pages completely
contained within a single website, and then test those models on pages from another
website with no links to the training set. This approach exploits a feature of some
websites — heavy internal linkage but few external links. Similarly, some work in
ILP constructs samples from sets of completely disconnected graphs (e.g., individual
molecules or English sentences) (Muggleton 1992). This approach are possible only
when the domain provides extremely strong natural divisions in the graphs, and this
approach is only advisable where the same underlying process generated each graph.
In contrast, subgraph sampling can be applied to data without natural divisions.
Where they exist, subgraph sampling will exploit some types of natural divisions.
Where they do not exist, logical divisions can be created that preserve the statistical
independence among samples.

Subgraph Sampling Eliminates Bias
In this section, we show how subgraph sampling eliminates the bias caused by
linkage, autocorrelation, and overfitting. First, we replicate the experiments that
produced Figure 4. However, rather than learning models for a randomized class
label, we learn models on the original class label, but with samples produced by
subgraph sampling. The results are shown in Figure 6. As before, the bias associated
with simple random partitioning is high. However, the distribution of bias for
subgraph sampling (b) has a mean bias near zero.

                                                            
3 What is considered “high” would vary somewhat by the desired precision of the estimated
accuracy. This is a topic for future work.
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random attributes for (a) simple random
partitioning and (b) subgraph sampling.
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Fig. 8. Subgraph sampling with maximal separation eliminates bias at all levels of linkage (L),
autocorrelation (C’), and number of random attributes (k).

The results in figures 4 and 6 were obtained using completely random attributes
artificially generated on studios. However, similar results are obtained if we learn
from attributes generated from the real characteristics of studios. The results in Figure
7 were generated by learning models with four attributes on studios. The attributes are
the first letter of the studio name, the decade in which the studio was founded, the
number of letters in the studio name (discretized to 10 unique values), and a binary
attribute indicating whether the studio is located in the U.S. As before, the bias is high
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for simple random partitioning. Bias for both distributions used the mean of the
distribution for subgraph sampling as an estimate of true error. These results confirm
that the bias does not result from some peculiarity in the generation of random
attributes, but rather results from dependence between the training and test sets
These results only indicate bias for a single combination of L , C’, and degree of
overfitting. Figure 8 shows the results of more systematic variation of these
quantities. The figure was produced from the same experiments as Figure 5, except
the training and test sets were constructed by subgraph sampling rather than simple
random partitioning. The result is extremely low bias across the full range of values of
L, C’, and k..

Conclusions and Future Work
Concentrated linkage and relational autocorrelation can cause strong bias in the test
set accuracy of induced models. In this paper, we demonstrate the bias using FOIL, so
that other researchers can easily replicate and extend our experiments, but we have
also observed this phenomenon in our own algorithms for relational learning.
Fortunately, the bias associated with linkage and autocorrelation can be corrected by
using subgraph sampling in preference to simple random partitioning.
While some special classes of relational data naturally allow subgraph sampling,
relational learning methods will increasingly encounter data in which this bias arises,
as we extend our work to more general classes of relational data, including networks
of web pages, bibliographic citations, financial transactions, messages, biochemical
interactions, computers, supervisory relationships, and social interactions.
This work also emphasizes the need to pursue research on relational learning
techniques that exploit relational autocorrelation to enhance the predictive power of
relational models. Additional work should also investigate methods to estimate the
bias associated with specific levels of autocorrelation and linkage, and to search for
classes of objects that exhibit those degrees of linkage and autocorrelation, so more
automated approaches to subgraph sampling can be devised.
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Appendix
The movie data were coded for input to FOIL as follows: Each studio attribute was
specified as an unordered discrete type with all attribute values flagged as a theory
constants. Unordered type specifications also define movies and studios, with 1382
unique labels for the movies and 128 unique labels for the studios respectively.
The input contains one target relation and two background relations:
receipts(movie)
made-by(studio)
studio-attributes(studio, first-char, name-len, in-us, decade)
The target relation described above for movie receipts contains both positive and
negative examples. The two background relations contain only positive examples; one
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specifying the relationships between movies and studios, and the other specifying
attribute values associated with each studio.
Learned clauses were similar in form to:
receipts(A) :- made-by(A,B), studio-attributes(B,C,D,E,F).
All experiments used the current version of FOIL (foil6.sh) obtained from:
<http://www.cse.unsw.edu.au/~quinlan/>.  Arguments to FOIL specified that negative
literals were not to be considered and the minimum accuracy of any clause considered
was at least 70%. Other than these two modifications, FOIL's default settings were
used.
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Abstract 

This paper discusses a few of the lessons we 
have learned developing a relational knowledge 
discovery system. The relationships among data 
instances in relational data provide extra infor-
mation for “mining.” This additional information 
has the potential to greatly improve the quality of 
learned models. However, the dependencies 
among instances in the data also introduce new 
statistical challenges for learning algorithms. Re-
lational data provide an ideal environment in 
which to examine a central challenge of knowl-
edge discovery – its “chicken and egg” character. 
Data representation can impair the abilit y to 
learn important knowledge, but knowing the 
“right” data representation often requires just 
that knowledge. With relational data, representa-
tion is often a choice; many alternate views of 
the data provide abundant fodder for reasoning 
about transformations. In light of this, we discuss 
representation and design choices that support a 
co-evolutionary process of knowledge discovery 
and data transformation in relation data.   

1.  Introduction 

Relational knowledge discovery is a new frontier of data 
mining that is just starting to be explored. Relational data 
offer a wealth of previously untapped information to ex-
ploit during the discovery process. However, along with 
new opportunities for discovery, the distinctive character-
istics of relational data also present several unique chal-
lenges. Relationships in the data represent interdependen-
cies among instances and these dependencies can make it 
difficult to learn accurate probabili stic models of the data. 
Also, there are often many alternative ways to represent 
any given set of relational data. Knowing the “right” rep-
resentation can be crucial to the discovery process but 
often this knowledge is not known a priori and needs to 
be learned during analysis. In order to exploit the oppor-
tunities offered by relational data, these issues should 
inform the design of both the architecture and the algo-
rithms of relational knowledge discovery systems. 

The lessons we report have been amassed throughout the 
process of developing and applying PROXIMITY, a system 
for relational knowledge discovery1. PROXIMITY is a set 
of tools that operate on a graph database designed to sup-
port the process of knowledge discovery in relational 
data. The tools of PROXIMITY provide methods for an 
iterative process of attribute creation, model learning and 
inference. One of the goals of the system is to support a 
transformative approach to knowledge discovery, which 
will be discussed in a later section.  

The majority of data routinely captured by businesses and 
organizations are relational, yet over the past decade most 
data mining research has focused on propositional data. 
Relational data offer unique opportunities to boost the 
accuracy of learned models and improve the quality of 
decision-making if the algorithms can learn effectively 
from the additional information the relationships provide. 
Recent efforts to modify traditional data mining tech-
niques for relational data include modified Bayes classifi-
ers, decision trees and association rules (Dzeroski & 
Lavrac 2001). These algorithms have been successfully 
applied across a range of applications but the explosive 
growth of structured data suggests more work is needed in 
this direction.  

Over the last two decades much of the work in the ma-
chine learning and knowledge discovery communities has 
focused on non-relational data, where instances are as-
sumed to be identical and independently distributed 
(i.i.d.). Relational data violate this assumption. Relation-
ships among instances often reflect dependence among 
instances, and the instances are often heterogeneous in-
stead of homogeneous. The assumption of independence 
is one of the most deeply buried assumptions in machine 
learning techniques and we need to fully understand the 
effects of such dependencies not only on relational model-
building processes, but also on evaluation of these tech-
niques. 

To a large extent, current research in relational knowledge 
discovery is focused on learning from the data and the 
structure of the relations. This is an important endeavor 

————— 
1 For additional details on PROXIMITY, see <http://kdl.cs.umass.edu>. 
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and it deserves our attention, but there is another aspect to 
the discovery process for which there is littl e support in 
current technologies – data transformation.  Data selection 
and transformation are essential to the successful applica-
tion of knowledge discovery algorithms. The standardiza-
tion of propositional data has limited our view of data 
transformation in the past, but as we move to relational 
data representations, this issue should return as a consid-
eration. 

1.1  Lessons Learned 

The aim of this paper is to focus attention on the lessons 
that we have learned from analyzing a number of rela-
tional data sets. These lessons include both key new tech-
nical ideas, some of which are yet to be fully explored, 
and system design choices that we have found to be help-
ful in our analyses. First, we discuss representation and 
argue for the utilit y of a simple graph representation. Sec-
ond, we characterize the space of relational features and 
outline the vast number of potential features that are 
available to relational learners. Third, we define relational 
autocorrelation, a characteristic of relational data that we 
have found to be ubiquitous in relational data. Fourth, we 
argue that relational data mining systems should be de-
signed to support transformative learning in order to co-
evolve knowledge and representation. Finally, we close 
with a short discussion of statistical issues resulting from 
the lack of independence in relational data that should 
influence algorithm design, and we point to papers treat-
ing these issues in greater detail . 

The lessons contained in this paper are relevant to re-
searchers working with both relational and propositional 
data. Many of the data sets considered to be i.i.d. are in 
fact flattened relational datasets. For example, medical 
records are often used to build models to predict disease 
given the unique symptoms of the patient. These records 
might include attributes that indicate the blood type of the 
patient’s parents as well as the family history of the par-
ticular disease. These attributes are examples of informa-
tion that may be better represented explicitly as relations. 
It is also possible that many of the patients live in the 
same area or work in the same building, and that this in 
fact determines their ill ness shared cause. In this case, the 
records are not independent even though they are repre-
sented propositionally. Researchers working with proposi-
tional data should be aware of problems that may be pre-
sent if statistical dependencies inadvertently exist in their 
datasets. The design principles and representation issues 
discussed in this paper are also intended for a general 
audience. The intimate connection between the process of 
discovery and data transformation should be reflected not 
only in approaches to data collection but also in methods 
for data storage and access.  

Although we will use the 2001 KDD Cup gene data (de-
scribed in the next section) to provide specific examples 
throughout this paper, the lessons have been garnered 

through work in many different relational domains, in-
cluding fraud detection, citation analysis, financial and 
corporate data, as well as movie data. 

2.  2001 KDD Cup 

The examples we provide are drawn for our experience 
participating in the 2001 KDD Cup (Cheng et al. 2002). 
For the past 6 years, the KDD Cup has been held in con-
junction with the ACM SIGKDD International Confer-
ence on Knowledge Discovery & Data Mining. One spe-
cific goal of the competition is to provide the KDD com-
munity with a common laboratory where current research 
can be evaluated on practical problems. Last year was the 
first time that a relational data set was included in a chal-
lenge problem, indicating an increase in both the aware-
ness of, and the need for, focused research efforts in rela-
tional discovery systems.  

Rapid advances in genome mapping have increased the 
interest in mining data from biological domains; conse-
quently, the data for the competition were drawn from this 
domain and in particular, the relational tasks were taken 
from the field of functional genomics. The competition 
was composed of three classification tasks on biological 
datasets; two of these tasks involved a dataset containing 
information about the yeast genome at both the gene level 
and at the protein level. Genes code for proteins and these 
proteins localize in various parts of the cell and interact 
with each other to perform various functions. For simplic-
ity, the rest of this paper will refer to ‘genes’ only and 
treat gene as synonymous with protein even though in-
formation in the data refer to both proteins and genes. 

Figure 1: Gene data schema. 

Figure 1 shows the data schema for the gene data from the 
2001 KDD Cup competition, as represented in 
PROXIMITY. The data contain information about 1243 
genes from the yeast genome with 1734 symmetric inter-
action links. The average number of interactions per gene 
is 2.6 (min=0,max=20). The training set consisted of 862 
genes; class label information was withheld for 381 ran-
domly selected genes in the test set. The tasks were to 
predict function and localization for each of the genes in 
the test set. There are 15 functional categories and each 
gene can be associated with more than one function. The 
average number of functions per gene is 2.6 
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(min=1,max=6). There are 15 locations and each gene 
localizes in a single location. There are six additional at-
tributes intrinsic to genes and two attributes concerning 
the interactions between genes. These data ill ustrate the 
need for representing attribute information on links. Type 
is a discrete attribute characterizing the gene interactions. 
Expression is a continuous attribute in the range [-1,1] 
measuring the strength of the interaction between the 
genes.  

Tasks 2 & 3 of the competition were to predict function 
and localization of these proteins; we placed 12 out of 41 
for function prediction and 10 out of 45 for localization 
prediction. We used PROXIMITY to construct 124 rela-
tional features in the gene data, and then built Simple 
Bayesian classifiers with these features. Our test set accu-
racy for predicting function was 92.6% (1st place: 
93.6%), for localization it was 66.14% (1st place: 72%).  

3.  Data Representation 

3.1  Relational Representation 

A common approach to learning from relational data is to 
"propositionalize" the data rather than retain its inherent 
structure.  A great deal of research has been conducted on 
machine learning techniques for propositional data, and it 
is often possible to build accurate models of relational 
data by flattening the data and applying these algorithms. 
Flattening refers to the process of making each instance 
identical by either duplicating or aggregating the rela-
tional information. For example, the gene data could be 
flattened into identical instances by taking the aver-
age/modal attribute values of a gene’s linked genes and 
appending these new aggregated attributes to the list of 
intrinsic attribute for each gene. However, flattening rela-
tional data removes the richer relational structure and in 
doing so, may impair learning. In addition, flattening has 
many other associated problems, which could result in 
incorrect statistical inferences and/or impaired learning.  

Specifically, flattening relational data can result in a com-
binatorial explosion in either the number of instances or 
the number of attributes, depending upon whether one 
decides to duplicate or aggregate. However, a more seri-
ous issue lies in the fact that both duplicating and aggre-
gating have the potential to produce biased parameter 
estimates (Jensen 1998).  Flattening destroys any record 
of the relationships among instances; because the flat-
tened data cannot account for dependencies in the original 
dataset, estimates of statistical significance on flattened 
data may be severely biased. Removing the relationships 
in the data also isolates instances from information about 
the predictions made on other objects. This inferential 
isolation eliminates the possibilit y of using predictions 
about related instances to inform inferences about other 
instances. Figure 2 shows that genes cluster by both loca-
tion and function. Flattening the gene data would preclude 

the application of an iterative classification technique 
(Nevill e and Jensen 2000) that uses predictions made with 
high confidence to improve predictions in later iterations 
or other approaches that use relational structure to im-
prove inference (e..g, Friedman, Getoor, Koller, and Pfef-
fer 1999). Flattening may also result in a representational 
mismatch of knowledge. Many simple relational concepts 
are extremely complex to represent in propositional form, 
yet effective learning requires that exactly the right attrib-
utes be identified up front.  

One of the main drawbacks of a flattened representation is 
loss of information. The lost information cannot be recon-
structed if it is later determined useful or necessary for the 
discovery process. However, propositionalization of rela-
tional data for learning is often a good approach used by 
many in the community, including ourselves. In fact, both 
winning teams in the 2001 KDD Cup used this approach. 
Maintaining a relational representation of the data does 
not prohibit flattening dynamically when necessary to 
learn models and allows for greater flexibilit y as research 
progresses in relational model building techniques.  

3.2  Simple Graph Representation 

We advocate using a simple graph structure to represent 
relational data. Several nearly equivalent formalisms exist 
for representing relational data sets including graphs, da-
tabase tables and first-order logic statements. However, 
graph representations facilit ate reasoning about networks 
of objects and support the flexible schemas described in 
the next section. 

Figure 2: Gene data fragment. 

PROXIMITY represents data using objects, links and attrib-
utes. Objects are used primarily to represent people, 
places, and things. Links represent relationships between 
objects, such as ‘mother-of’ or ‘made-in’ or ‘part-of.’ 
Attributes represent basic characteristics of items, either 
objects or links. Attributes have a name (e.g. ‘City’ ) and 
values (e.g. ‘Amherst’ ). Attributes may be associated with 
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objects and/or links and it is possible for many attribute 
values to be associated with any one item. In addition to 
these basic data structures, PROXIMITY can also represent 
views of the graph as collections of subgraphs. Figure 2 
contains a fragment of the yeast gene data from the 2001 
KDD Cup as an example. Nodes in the graphs represent 
genes, and links represent interactions between the pro-
teins that the genes produce.  

3.3  Flexible Schema 

The PROXIMITY data schema is much more flexible than 
those commonly used in relational databases. A tradi-
tional database schema assumes homogenous object 
types, storing records for each type of object in a separate 
table with a fixed numbers of attributes. Once the schema 
is specified it can be diff icult to change. It can also be 
diff icult to change the type of an individual object, or 
insert records for objects whose type is uncertain. Itera-
tive structuring or “sense-making” activities that are cen-
tral to knowledge discovery are not easily supported by 
these traditional fixed schemas. 

In contrast, PROXIMITY’s schema facilit ates a flexible 
approach to data representation. It allows for the trans-
formation of the data as necessary throughout the discov-
ery process. Instead of associating a fixed set of attributes 
with objects of a given type, attributes are each stored in a 
separate table. It is no longer assumed that any set of ob-
jects have the same structure, each object can be associ-
ated with any set of attributes. This approach escapes the 
rigid record typing of a traditional schema, and it enables 
analysts to introduce and transform data structures as 
analysis progresses.  

Specifically, PROXIMITY’s flexible schemas support a 
adaptable type system, facilit ate attribute creation and 
allow for eff icient scaling. The type of an object or link is 
an attribute like any other. An object or link can have no 
type, one type, or many types, and types of objects and 
links can be easily changed. New attributes can be added 
easily, without requiring the attribute be added to every 
object of a given type, even when values are not known. 
This type of representation also allows for fast access to 
groups of objects/links instead of fast access to full attrib-
ute information for a given object or relation.  This trade-
off of row-view for column-view allows for fast views of 
collections of heterogeneous subgraphs.   

4.  Use Many Types of Relational Features 

In propositional datasets with sparse information, it can 
be hard to build accurate models. However, relational data 
may contain a wealth of information in the relationships 
even if there is only sparse attribute information for the 
objects. In many transactional datasets such as financial 
transactions or telephone call detail , the bulk of the data 
are contained in relations. In these situations littl e is 

known about the objects in isolation but it is still possible 
to build models using the transaction patterns. Fortu-
nately, the relational structure provides a wealth of oppor-
tunities for construction of new features to use in building 
models.  

4.1  Relational Features 

We define feature as mapping between raw data and a 
low-level inference. For example, a feature in the gene 
data might be Function=cellular organization. In this 
case, the feature combines an attribute (function), an op-
erator and a value. Typically, many features are combined 
into a higher-level model such as a decision tree or a rule 
set. Relational features are used by models that predict the 
value of an attribute based on the attributes of related ob-
jects. For example, we might use the localization of gene 
y to predict the function of gene x if x and y interact to-
gether. Relational features are similar to the features de-
scribed above in that they identify both an attribute and a 
way of testing the values of the attribute. However, rela-
tion features may also identify a particular relation (e.g. 
Interaction(x,y)) that links a single object x to a set of 
related objects Y. If this is the case, the attribute refer-
enced by the feature may belong to the related objects Y 
and the test is conducted on the set of attribute values in 
the objects in Y. For example, the relational feature: 
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determines whether the most prevalent localization of all 
the genes interacting with x is equal to nucleus.  

When the relation between x and Y is one-to-many, a rela-
tional feature must considers a set of attribute values on 
the objects Y. In this situation, standard database aggrega-
tion functions (e.g. max, mode, average) can be used to 
map sets of values into single values. For example, if a 
gene' s location depends on the chromosome values of 
linked genes, and a gene interacts with five other genes, 
then a model could aggregate the five values of chromo-
some with a function such as mode. An alternative ap-
proach is to use first-order features that produce boolean 
values characterizing the neighborhood. For example, a 
first-order feature might determine whether another gene 
with a particular function and location interacted with a 
given gene. The attribute would be true if one or more 
genes met the function and location criteria. 

4.2  Relational Feature Space 

The size of the potential feature space for relational data 
is enormous, as is evidenced by the search space consid-
ered in many ILP systems. Flach and Lavrac have out-
lined a framework for first-order features (2000) but the 
treatment is limited to features consisting of conjunctions 
of literals. Much of the work in relational learning outside 
the ILP community has considered features using the ag-
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gregation functions described in the previous section (e.g., 
Friedman et. al. 1999). Our own work for the KDD Cup 
consisted of creating over a hundred aggregated relational 
features. However, beyond aggregation of attribute val-
ues, there is a wealth of potential features concerning the 
structure of the data itself. Figure 3 outlines a range of 
feature types made possible by relational data. The x-axis 
represents the scope of the feature. Individual refers to 
features about objects in isolation. Local refers to features 
constructed from the local relational neighborhood on 
objects. Global refers to features constructed from the 
entire graph of objects. Individual features can only use 
attributes because an object in isolation has no graph 
structure. However, both local and global features can 
consider either graph structure or item attributes, or both.  

Figure 3: Feature space graphic 

Figure 3 presents examples of features in each of the five 
types. Phenotype is an intrinsic attribute of genes that is 
provided in the raw data. Clustering coeff icient is defined 
as the ratio of the number of linked neighbors (those who 
also link to each other) to the possible number of linked 
neighbors (Watts 1999). This measures the connectedness 
of surrounding genes. Most-prevalent-location was de-
scribed in section 4.1; it considers the most prevalent lo-
calization of all the genes interacting with a given gene. 
Centrality measures help to determine the relative impor-
tance of nodes in the graph (Wassermann and Faust 
1994). Betweenness centrality counts the number of short-
est paths in the graph that travel through each gene. 
Overall -rank-of-cell -wall -linkage is a two-step feature. 
First the degree for each gene is measured with respect to 
genes located in the cell wall . Then all the genes receive a 
ranked according to these degrees. The highest ranked 
gene is the one that interacts with more genes located in 
the cell wall than any other gene in the genome. 

Most, if not all of the features considered by current rela-
tional data mining systems fall i nto the categories of Indi-
vidual and Local Item-Attributes. Structural features such 
as clustering coeff icient and centrality are more common 
in social network analysis, and other algorithms such as 
Kleinberg’s hubs and authorities algorithm (Kleinberg 
1999) that have been developed in the computer science 
community have only begun to be explored. Kleinberg' s 
algorithm was developed to quantify two measures of web 
page “ interestingness.” Hubs and authorities are defined 
recursively – a web page is an authority if it is linked to 

by many hubs, and it is a hub if it provides links to many 
authorities. The algorithm iteratively calculates hub and 
authority weights on all pages simultaneously using the 
link structure. Features such as these require a global view 
of the graph to be calculated. Features of this type have 
yet to be exploited by the community, and are available 
only if you retain a relational representation. Much work 
has been done in traditional machine learning to deter-
mine the utilit y of features and select the most useful. 
Both this work and work in automatic feature construc-
tion, are important to relational knowledge discovery sys-
tems because the number of potential relational features.  

5.  Autocorrelation is Ubiquitous 

Our analysis indicates that relational autocorrelation is a 
common characteristic of relational data2. Informally, 
relational autocorrelation occurs when the values of a 
given attribute are highly uniform among objects that 
share a common neighbor. The fragment of the gene data 
in Figure 2 shows how many linked genes have highly 
correlated functions and locations. 

We will define relational correlation C(X,f,P,Y,g) with 
respect to two sets of objects X and Y, two attributes f and 
g on objects in X and Y, respectively, and a set of paths P 
that connect objects in X and Y.  

Definition: Relational correlation C is the correlation 
between all pairs (f(x),g(y)) linked by paths in P.  ■ 

Given the pairs of values that these elements define, tradi-
tional measures such as information gain, chi-square, and 
Pearson' s contingency coeff icient can be used to assess 
the correlation between values of the attributes f and g on 
objects connected by paths in P. The range of C depends 
on the measure of correlation used. 

We can use the definition of relational correlation 
C(X,f,P,Y,g) to define relational autocorrelation as the 
correlation between the same attribute on distinct objects 
belonging to the same set. 

Definition: Relational autocorrelation C' is: 

 }|),({),,,,(),,(' jiji xxxxpPforfXPfXCPfXC ≠=≡  ■ 

For example, C' could be defined with respect to gene 
objects, the attribute localization on genes, and paths 
formed by traversing Interaction links that connect the 
genes to other genes. 

5.1  Autocorrelation in Relational Datasets 

If the underlying measure of correlation varies between 
zero and one, then C'=1 indicates that the value of the 

————— 
2 Much of this discussion is drawn from earlier papers (Jensen and 
Neville 2002a,b). 
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attribute for a specific node xi is always equal to all other 
nodes xj reachable by a path in P. When C'=0, values of 
f(X) are independent. Table 1 gives estimates of relational 
autocorrelation for gene function and localization, linked 
through other genes. For a measure of correlation, Table 3 
uses Pearson's corrected contingency coeff icient (Sachs 
1992), a measure that produces an easily interpreted value 
between zero and one. Autocorrelation is fairly strong for 
both class labels. 

Table 1: Autocorrelation in the gene data 
Autocorrelation Type Value 
C'(Function,Gene,Interaction) 0.52 
C'(Localization,Gene,Interaction) 0.76 

 
In addition to the gene data, we have encountered many 
other examples of high relational autocorrelation. For 
example, in our study of publicly traded companies, we 
found that when persons served as off icers or directors of 
multiple companies, the companies were often in the 
same industry. Similarly, in data from the Internet Movie 
Database, movies linked through a common studio, direc-
tor or producer have highly autocorrelated box-off ice re-
ceipts. Such autocorrelation has been identified in other 
domains as well . For example, fraud in mobile phone 
networks has been found to be highly autocorrelated (Cor-
tes et al. 2001). The topics of authoritative web pages are 
highly autocorrelated when linked through directory 
pages that serve as "hubs" (Kleinberg 1999). Similarly, 
the topics of articles in the scientific literature are often 
highly autocorrelated when linked through review arti-
cles. 

Relational autocorrelation represents an extremely impor-
tant type of knowledge about relational data, one that is 
just beginning to be explored and exploited for learning 
statistical models of relational data (Nevill e and Jensen 
2000; Slattery and Mitchell 2000). Deterministic models 
representing the extreme form of relational autocorrela-
tion have been learned for years by ILP systems. By rep-
resenting and using relational autocorrelation, statistical 
models can make use of both partially labeled data sets 
and high-confidence inferences about the class labels of 
some nodes to increase the confidence with which infer-
ences can be made about nearby nodes. 

Relational autocorrelation can also complicate learning 
and evaluating relational models. These issues are out-
lined further in section 7. 

6.  Transformative learning 

Successful knowledge discovery is often an iterative proc-
ess during which analysts coevolve their domain knowl-
edge and the way in which they represent data about that 
domain. Building models of raw data is frequently 
unsuccessful but this phase (as well as subsequent phases) 
can suggest new ways to view the data, either by 
modification or by constructions of new features. Knowl-

edge discovery can also be approached as a hierarchical 
process where simpler concepts need to be learned first 
and then used together to model more complex concepts. 
Supporting an iterative approach to discovery is useful for 
systems designed to analyze propositional data, and it is 
vital for systems designed to analyze relational data. 

6.1  Supportive Architecture 

We have found that the discovery process is intimately 
connected to how data are represented. Sometimes it is 
hard to know the ‘ right’ way to represent relational data 
for analysis. For example, should a financial transaction 
between two people be represented as a ‘ transaction’ ob-
ject with relations to the two people or just as a relation 
between the two people? It could depend on the task. If 
the user is trying to model fraudulent businesses, then the 
first representation might be more useful to look at all 
transactions conducted at a particular site. However, if the 
user is trying to model fraudulent people, the second rep-
resentation might be more useful to view aggregate be-
havior of an individual. Often the task is only to model 
‘f raud’ and it is during the process of discovery that one 
or the other view becomes the focus of the analysis. In 
this situation, a hard and fast choice of representation up 
front could not only slow down discovery but also prevent 
it completely. 

We have designed PROXIMITY with an architecture suited 
to managing structured data and methods that can both 
support and direct effective data transformations. In addi-
tion to the simple graph representation described earlier, 
PROXIMITY provides views of the graph using collections 
of subgraphs. For example, in the gene data we could 
create a collection of all the genes that localize in the cell 
wall and then analyze the properties of these genes to try 
to predict function. This would be useful i f we were able 
to build an accurate model of localization that could be 
applied to test data first and then have a second model 
that predicts function given localizations. 

We could also create a collection of subgraphs in the gene 
data to view each object in its local relational neighbor-
hood. In this case, each subgraph in the collection would 
consist of a core gene object and there would be a sepa-
rate subgraph for each gene in the data. Each subgraph 
could contain all the other genes that the core gene inter-
acts with; these genes may be duplicated across sub-
graphs. This approach allows for fast calculation of fea-
tures concerning the local neighborhood of a gene. Most 
of the attributes we constructed for the KDD Cup were 
calculated using such a view of the gene data. The view 
made it simple to calculate such attributes as  ‘count of 
linked genes in golgi’ and ‘sum of interaction expressions 
to linked genes whose function is cellular transport.’  

Views of the graph facilit ate the analysis process by al-
lowing an analyst to filter and abstract the data. Filtering 
the data is often useful in data sets with large numbers of 
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instances or attributes, but it can also be useful when the 
data have many types of objects or links as well . Often, 
filter the data can reveal new associations that were pre-
viously hidden or swamped out by other portions of the 
data. Our analysis of the gene data included calculating 
autocorrelations for genes linked in various ways. For, 
example we filtered the links by type and expression. We 
also looked at pairs of interacting genes that shared the 
same function or location. Table 2 reports several of the 
high autocorrelations we found using filtered links.  

Table 2: Autocorrelation in the gene data 
Autocorrelation Type Value 
C'(Func=transcription,Gene,Interact-same-loc) 0.92 
C'(Func=transport,Gene,Interact-type=gen-phys) 0.96 
C'(Loc=nucleus,Gene,Interact-type=genetic) 0.84 
C'(Loc=golgi,Gene,Interact-same-func) 0.62 

 

6.2  Inductive Closure 

The abilit y to transform the data easily and repeatedly 
throughout the discovery process is important not only to 
improve eff iciency but it is also crucial to evolving 
knowledge about the domain. To this end, we designed a 
system with inductive closure. This denotes that the sys-
tem is closed under induction -- the results of any analysis 
feed directly back into the system to be reused by further 
analysis. This design choice is again motivated by the 
iterative nature of the discovery process and a view of the 
database as a blackboard. If relationships in the data are to 
be used effectively to improve the quality of predictions, a 
system’s model output should feed directly into the next 
model-building phase.  

PROXIMITY modules use a small number of special pur-
pose data structures to make interaction between modules 
possible and is accompanied with a scripting language to 
support dynamic compositions by analysts using any 
number of analysis methods. PROXIMITY classifiers oper-
ate on collections, use attributes and produce attributes to 
record predictions. PROXIMITY graph queries take a sub-
graph specification, output collections of matches and 
facilit ate adding new object/links and or calculating at-
tributes based on the information in the subgraphs. 
PROXIMITY graph calculation modules that construct 
views such as connected components or paths operate on 
collections and produce either collections or attributes. 

7.  Statistical Opportunities and Challenges 

Relational data have the potential to drastically improve 
not only the accuracy of learned models, but also the 
quality of discovered patterns. However, the dependence 
among instances in the data introduces new statistical 
challenges and opportunities for relational learning algo-
rithms. As we seek to represent and use relational auto-
correlation in statistical models of relational data, we will 

need to adjust for its effects on feature selection and 
evaluation. Solving these issues could result in huge bene-
fits by reducing the sample complexity of the learning 
algorithms and increasing the accuracy of the learned 
models.  

7.1  Feature Selection Bias 

Two common characteristics of relational data sets — 
concentrated linkage and relational autocorrelation — 
can cause learning algorithms to be strongly biased to-
ward certain features, irrespective of their predictive 
power. In a related paper  (Jensen and Nevill e 2002a) we 
show how dependence among the values of a class label 
in relational data can complicate feature selection in 
methods for machine learning. We show how linkage and 
autocorrelation can combine to reduce the effective sam-
ple size of some data sets, introduce additional variance, 
and lead to feature selection bias. To our knowledge, no 
current relational learning algorithm accounts for this 
bias. Resampling can be used to obtain accurate estimates 
of variance for each feature and we are currently investi-
gating techniques to use those estimates to improve fea-
ture selection in relational data.  

7.2  Bias in Evaluation 

Linkage and autocorrelation can also cause traditional 
methods of evaluation to greatly overestimate the accu-
racy of induced models on test sets. Accurate evaluation 
of learning algorithms is central to successful research in 
relational learning. The most common method for 
evaluating a learning algorithm is to partition a given data 
sample into training and test sets, construct a model on 
the training set and evaluate the accuracy of that model on 
the test set. Dependence among the values of a class label 
in relational data can cause strong biases in the estimated 
accuracy of learned models when accuracy is measured in 
this way. In general, current techniques for evaluating 
relational learning algorithms do not account for this bias. 
We’ve presented a new sampling algorithm that can be 
applied to any relational data set to eliminate this bias in a 
paper submitted elsewhere (Jensen and Nevill e 2002b). 
This approach removes the dependence between training 
and test sets by confining any correlation among class 
labels to a single subsample (i.e. within the subsamples 
instead of across the subsamples). 

7.3  Improving Predictions 

In addition, maintaining relational representations allows 
inference procedures to exploit relational autocorrelation 
to improve the predictive accuracy of models. By preserv-
ing the relational structure of the data, we can exploit the 
connections between objects to improve classification 
accuracy. We have developed an iterative classification 
technique (Nevill e and Jensen 2000) based on the premise 
that if two target objects are related, inferring the class of 
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one can tell us something about the class of the other. As 
the name suggests, iterative classification runs a classifier 
many times on the same collection of subgraphs, recalcu-
lating attribute values after each iteration. Inferences 
made with high confidence in initial iterations of the clas-
sifier are fed back into the data to strengthen inferences 
about related objects in subsequent iterations. 

8.  Conclusions 

The biases associated with linkage and autocorrelation 
indicate the importance of maintaining relational data 
representations, rather than propositionalizing data. Main-
taining a relational data representation makes it possible 
to assess the statistical effects of linkage and autocorrela-
tion, and to adjust for the resulting bias. In addition, rela-
tional representations allow inference procedures to ex-
ploit relational autocorrelation to improve the predictive 
accuracy of models. Finally, relational representations 
extend the space of potential relational features; in par-
ticular, global and structural features present a set of pre-
viously unexplored features. 

A co-evolutionary approach to knowledge formation and 
data transformation addresses the “chicken and egg” 
character of knowledge discovery. Knowing the “right” 
representation can be crucial to the discovery process but 
often this knowledge is not known up front and needs to 
be learned during analysis. The additional information 
contained in relationships allows for alternate views of the 
data and as such contain many possibiliti es for transfor-
mation during learning. Systems designed to support an 
iterative discovery approach promise to clarify the utilit y 
of various representations and will enable dramatic im-
provements in knowledge discovery processes. 
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ABSTRACT
We analyze publication patterns in theoretical high-energy
physics using a relational learning approach. We focus our
analyses on four related areas: understanding and identify-
ing patterns of citations, examining publication patterns at
the author level, predicting whether a paper will be accepted
by specific journals, and identifying research communities
from the citation patterns and paper text. Each of these
analyses contributes to an overall understanding of theoret-
ical high-energy physics that could not have been achieved
without examining each area in detail.

1. INTRODUCTION
We identify interesting patterns and relationships in the

theoretical high-energy physics publishing community using
a relational learning approach. We focus on several high-
level questions:

• Can we predict why some papers receive more citations
than others? What are the trends in citations and
references?

• What factors contribute to an author’s influence? Can
we identify measures of influence? Can we predict po-
tential award winners?

• What factors contribute to journal publication? Can
we predict whether a paper will appear in a particular
journal?

• Can we identify schools of thought or communities in
theoretical high-energy physics? Who are the most
authoritative authors for each community?

We analyzed these questions using a relational approach.
We constructed the relational schema shown in Figure 1.
This schema provides a rich representation for the hep-th
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Paper
(29,555)

Author
(9200)

Journal
(199)

Authored
 (58,515)

Published In
   (20,826)

Citation
(352,807)

Co-Authored
    (87,794) Domain

(3116)

Affiliation
 (12,487)

Figure 1: Schema extracted from the abstracts and
citation data. Objects are represented by vertices
and relations by edges; numbers in parentheses are
object and relation counts.

data and supports many interesting analysis and prediction
tasks. In the following sections, we discuss our analyses and
present our results, including:

• Approximately 26% of the people in hep-th wrote pa-
pers that received 80% of the citations.

• Edward Witten is the most influential author in theo-
retical high-energy physics.

• Papers with only a single author are less likely to be
published in journals than multi-authored papers.

• Authors tend to prefer particular journals, that is, a
journal’s name is autocorrelated through authors.

• Authors tend to publish within topics (i.e., topics are
also autocorrelated though authors).

These findings and many others are explained in more
detail in sections 3 through 6.

2. DATA REPRESENTATION
We use a relational representation from the hep-th data.

Our representation uses an attributed graph, G = (V, E).
Objects, such as authors, journals, and papers, are repre-
sented as vertices in the graph. Relations between these ob-
jects, such as published-in(paper, journal), are represented
by links between the objects. If there is a relation r(o1, o2),
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then o1, o2 ∈ V and r ∈ E. Attributes are associated
with objects, such as author.last-name, or edges, such as
authored.rank.

Figure 1 shows the objects and relations we use, along
with their counts in the database. Details on the attributes
and on how we extracted them from the hep-th data are
given in Appendix A. The process of author consolidation,
that is, determining if the John Smith who wrote paper 1
is the same person as the J. Smith who wrote paper 2, was
greatly facilitated by the relational structure [1]. Details of
our consolidation approach are in Appendix B.

3. CITATION ANALYSIS
Our first analysis focuses on the papers and citation re-

lations between them. We start by identifying patterns and
correlations in this data. We use this to analyze why some
papers are more popular than others and we build a rela-
tional model to predict popular papers.

3.1 Citation Graph Analysis
The citations graph is comprised of 1,928 separate con-

nected components. The largest contains 27,400 papers,
while all the others contains 10 or fewer papers. The growth
in popularity of arXiv and hep-th (1397 papers in 1992 to
3312 in 2002) and the limited time frame of the data set
cause edge effects on the early and late years; so we of-
ten concentrate on the more stable middle years. Figure 2a
shows these effects. We break both references and citations
into self and non-self categories. A self citation or reference
means that there is a shared author between the two papers.
18% of the citations in hep-th are self citations. On a per-
paper basis, an average of 28% of a paper’s references cite its
authors past work and 34% of a paper’s citations are from
its authors. Papers with low citation and reference counts
generate a large proportion of the self citations thus the per-
paper averages are higher than the overall percentage. The
number of non-self citations peaks for papers submitted in
1996.

Because papers are often submitted to hep-th before being
published in a journal, we hypothesized that papers might
receive citations in two peaks. In particular, a paper could
be cited by other papers in hep-th as soon as they were
submitted to arXiv and again after being published in a
journal. Figure 2b shows the number of citations that each
paper received in the years following its submission to arXiv .
Starting with the overall mean (the thick line), we can see
that papers generally receive the most citations in the year
following submission to arXiv . Since the average time from
a paper’s submission to arXiv until it appears in a journal
is about one year, this peak likely coincides with journal
publication. It is interesting to note that papers receive an
average of two citations in the year prior to journal publi-
cation. This demonstrates the success of arXiv by allowing
people to cite work before it has been published.

The pattern of citations for papers submitted to arXiv in
1992 is also interesting. In this case, the peak is two years
after submission to arXiv . This delay can be explained by
arXiv ’s growing popularity as the use of the Internet grew;
in 1992, their audience was limited. In later years (e.g.,
1995, 1999), the number of citations increases more quickly
due to the larger number of authors with Internet access.

Figure 2c shows the average number of non-self citations
for papers that have been published in a journal versus un-

Author Num. in Num. in Non-self
authority papers top 10 top 50 citations
Edward Witten 4 14 18716
Juan M. Maldacena 2 6 8076
Steven S. Gubser 2 4 5067
Igor R. Klebanov 1 4 5843
Leonard Susskind 1 4 5526
Joseph Polchinski 1 4 5535
Paul K. Townsend 1 3 4991
Stephen H. Shenker 1 2 2300
Michael R. Douglas 0 5 5787
Nathan Seiberg 0 3 9911
Cumrun Vafa 0 3 8594
Andrew Strominger 0 3 6480
Petr Horava 0 2 1936
Daniel Z. Freedman 0 2 1874

Table 1: Authors of the top 10 and top 50 most
authoritative papers and the total number of non-
self citations that these authors have received in hep-
th.

Author of Num. in Num. in Non-self
hub papers top 1% top 5% references
Igor R. Klebanov 15 31 5843
Arkady A. Tseytlin 10 29 5352
Steven S. Gubser 9 28 5067
Ofer Aharony 8 19 2307
Washington Taylor IV 6 7 2115
Alberto Zaffaroni 6 13 1369
Clifford V. Johnson 6 21 1615

Table 2: Authors of the top 1 and top 5 percent hub
papers and the total number of non-self references
that these authors have made.

published papers. Papers that are published in a journal
have a significantly higher average non-self citation rate than
papers that are published only on arXiv . Although many
people in the high energy physics community have access
to arXiv , it is clear that either journal publication is still
important in increasing a paper’s visibility, or that authors
writing highly cited papers still seek journal publication.

The hubs and authorities algorithm [6] can used on the
citation graph to identify authoritative papers and poten-
tial review papers. A hub is an object that points to many
authorities. This is likely to be a review paper. An au-
thority is an object that is pointed to by many hubs. Once
we identified the most authoritative papers, we examined
the authorship for these papers. Table 1 shows the authors
who have written at least two of the top 10 and top 50
most authoritative papers. As many of these names appear
again when we study influential authors, we discuss their
specifics in section 4. In general, the authors of these highly
authoritative papers include a number of award winners in-
cluding MacArthur Foundation fellows, Dirac winners, and
Fields medalists. They hail from many prestigious institu-
tions including the Institute for Advanced Studies at Prince-
ton, Princeton University, Harvard, Rutgers, Stanford, UC
Santa Barbara, Cambridge, UC Berkeley, and MIT.

Table 2 shows some authors who have written top hub pa-
pers in the database. We were interested in the question of
whether some authors write mostly review papers. In arXiv ,
no author has written more than one of the top 10 or top 50
hub papers. However, if we examine the top 1% and top 5%,
several authors show up as frequently writing review papers.
The top three authors on this list, Klebanov, Tseytlin, and
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Figure 2: Temporal citation and reference patterns for papers submitted to arXiv . (a) Total number of
non-self and self citations and references by year. (b) Citations patterns for all papers. (c) Citation patterns
for published versus unpublished papers.

Attribute Through Score
arXiv area of paper Author 0.72
Num. downloads first 60 days Author 0.55
Journal name Author 0.69
Clustered topic of paper Author 0.54
Authority score Paper 0.74

on coauthor graph
arXiv area of cited paper Paper 0.70
Num. of coauthors Paper 0.45
Num. downloads first 60 days Journal 0.42

Table 3: Selected autocorrelation scores.

Attribute 1 Attribute 2 Score
For paper

Authority score Num. of citations 0.85
Area (from arXiv) References (binned) 0.68
Hub score Num. of references 0.62
Num. downloads first Num. of citations 0.57

60 days
Is paper published Citations (binned) 0.46

For author
Num. of publications Num. of distinct coauthors 0.85
Num. of distinct Num. of non-self citations 0.59

coauthors

Table 4: Selected correlation scores between at-
tributes.

Gubser, are frequent co-authors. Table 2 contains no ma-
jor award winners and represents a slightly different list of
institutions than Table 1 including Princeton, Ohio State,
Rutgers, MIT, CERN and the University of Durham, UK.

3.2 Citation Data Dependencies
To better understand what makes papers popular and

identify trends and patterns in the citation data, we an-
alyzed correlations in the citation data. For discrete at-
tributes, we used chi-square corrected contingency coeffi-
cients; for continuous attributes we used correlation coef-
ficient [13] Tables 3 and 4 list significant correlations in
the data. All reported correlations are significant at the
p < 0.0001 level.

The number of times that a paper is downloaded is cor-
related with the number of non-self citations of that paper.
This is not surprising as one expects more frequently down-
loaded papers to be cited more frequently.

In addition to correlations among variables of a single ob-
ject, we also measured autocorrelation throughout the data
graph [3]. Autocorrelation is a statistical dependency be-
tween the values of the same variable on related objects, also
known as homophily [7]. For example, the number of down-
loads of a paper is autocorrelated through authors. This
means that if one of an author’s papers is frequently down-
loaded, other papers by the same author are likely to be
downloaded as well.

3.3 Predicting Popular Papers
We used relational probability trees (RPTs) [11] for sev-

eral modeling tasks. For each task, we sampled papers tem-
porally, training the model on papers from one year and
testing on the following year’s papers. To avoid edge ef-
fects, we considered only papers from 1995 to 2000. For
classification, the models considered characteristics of pa-
pers, their referenced papers, authors, and other past papers
written by the authors. Some example attributes include the
number of pages of the paper, its file size in KB, keywords,
the author’s number of past co-authors, the number of past
publications for each author, and the number of citations
received by a cited paper. Attributes were calculated for
each temporal sample. For instance, to predict the class
label on a paper submitted in 1997, the model considered
the citation/publication history of related objects up to and
including 1996.

The first modeling task involved predicting the number of
non-self citations that a paper will receive. We categorized
the number of non-self citations into quartiles: {0-1, 2-5, 6-
14, >14}. Default classification accuracy is approximately
25%. Over 5 training/test splits, RPT models achieved and
average accuracy of 44%. Although 44% is not an extremely
high accuracy, it is not likely that we would achieve a high
accuracy solely based on the information available in hep-th.
Such measures as the quality of the paper are not able to
be captured based on the performance of an author’s past
papers and this may not fully capture the situation.

One reason we chose to use RPT models is their selectiv-
ity. We can examine the features chosen by the trees and
identify the most relevant features for the classification task.
The RPT models identified that a paper has a probability
of 0.85 of receiving more than 14 non-self citations if 1) the
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paper has more than 8 references 2) the authors have at
least 2 past papers with more than 8 non-self citations 3)
the authors have at least 25 past papers (that are at least
15 pages long) 4) at least 30% of cited work is unpublished.

4. AUTHOR ANALYSIS
The second part of our analysis focuses on the authors

in theoretical high-energy physics. We start by analyzing
the overall structure of the author subgraph and extend this
understanding to identifying influential authors. We define
several measures of influence and build a relational model
to identify and predict award-winning authors. Finally, we
predict potential award winners in theoretical high-energy
physics.

4.1 Co-Author Graph Analysis
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Figure 3: (a) Percent of the author graph that is one,
two, and three links away from several sets of the
top 1% of authors as well as from a random sampling
of 1% of authors. (b) Percent of the author graph
that is 1, 2, and 3 links away from Edward Witten
versus the average author.

We found that the high energy physics community is tightly
knit. In the graph of authors linked by co-authored rela-
tions, 7304 of the total 9200 authors belong to a single con-
nected component. As with the paper graph, other compo-
nents are all small (15 or fewer authors). When we narrowed
this set of authors to authors who wrote the top 1%, 5% and
10% of the authoritative papers, we found that in each case
the vast majority of the authors remained connected, with
only a very small percentage in separate components. This
provides evidence for the idea that influential scientists train
the up-and-coming influential scientists in their labs, either
as students or post-doctoral fellows [5], and co-author with
them.

We also found that authors who are highly cited or have
many distinct co-authors are more central to the author
graph than randomly selected authors. Figure 3 shows the
percentage of authors who are 1, 2, and 3 links away from
authors who wrote the top 1% of authority papers, authors
who have received the top 1% of non-self citations and the
top 1% of authors who have co-authored with different peo-
ple. These numbers are compared to 10 random samplings
of 1% of the authors. Each of these sets of influential authors
reaches a higher percentage of authors by following even just
one co-authored relation than random. This trend continues
for paths of length two or three. We also show the average
degree of separation from Edward Witten, who consistently
shows up as the most influential author in hep-th.
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Figure 4: Cumulative percent of non-self citations
received per author.

Before building a quantitative measure of an author’s in-
fluence, we examined the data for general trends. From
1995 through 2000, a relatively stable window for the data
set, 6405 authors submitted papers to arXiv . Of these au-
thors, on average each wrote 5 papers; the median was 2.
Sergei Odintsov (with 92 papers) and H. Lu and C.N. Pope
(each with 84) topped the distribution. As seen in Table
6, the top authors produce high numbers of papers by co-
authoring widely and frequently. The average number of
distinct co-authors is 5.5. Of the papers submitted to arXiv
in this period, each author published an average of 4 papers
in journals. On their combined papers, authors recieved an
average of 76 non-self citations, with a much lower median of
7. The top 10% of authors averaged 140 non-self citations.

The 80/20 rule or Pareto’s Principle states that, in power
law distributions, 80% of the mass is generally due to only
20% of the values (whether in science or other domains)[12,
8]. We investigated this rule in theoretical high-energy physics
by examining the number of non-self citations received on
a paper and author basis. In the hep-th data, 80% of the
non-self-citations go to 17.8% of the papers and 26.3% of
the authors wrote these papers. The full distribution for
authors is shown graphically in Figure 4.

4.2 Author Data Dependencies
Trends and dependencies for authors are summarized in

Tables 3 and 4. The number of an author’s publications
is correlated with the number of citations that the author
receives. This means that either authors who have more ci-
tations publish more frequently or that people who publish
more papers receive more citations. Perhaps more surpris-
ing is that the number of publications that an author has is
correlated with the number of distinct co-authors that the
author has published with. This indicates that frequently
published authors do not tend to work repeatedly with only
the same set of co-authors but continue to expand their re-
search to working with new people.

We expected that authors who write authoritative papers
are likely to write other authoritative papers but this was
not the case. A paper’s authority score was not autocorre-
lated through author which means that most authors will
write only a few authoritative papers in their lifetime.

Information about the research styles of authors can be
gained from autocorrelation scores. For instance, the num-
ber of distinct coauthors is autocorrelated through papers.
That is, if you publish with other authors who publish with

88



1. Number of non-self citations received
2. Total number of citations received
3. Number of papers written
4. Number of papers published in journals
5. Number of papers with over 12 citations
6. Number of co-authorships
7. Number of distinct co-authors
8. Average non-self citations per paper
9. Maximum non-self citations received on any paper
10. Percentage of papers published
11. Percentage of papers with over 12 citations
12. Weighted combination of 1, 4, 5, and 9.

Table 5: Measures of author influence

many distinct people you are also likely to publish with
many distinct people. Within the arXiv data, an author
who publishes a paper in a particular journal is likely to
publish his other papers in that journal as well.

4.3 Analyzing Author Influence
After gaining a general understanding of author publica-

tion patterns, we hypothesized that author influence, that
is, overall reputation and impact, could be defined using the
measures shown in Table 5.

(a) Overall co-authorships (b) Distinct co-authorships
Author Count
C.N. Pope 337
H. Lu 325
S.D. Odintsov 296
Sergio Ferrara 233
Mirjam Cvetic 231

Author Count
Cumrun Vafa 63
Gary W. Gibbons 60
Jan de Boer 56
Sergio Ferrara 55
Antoine Van Proeyen 55

Table 6: (a) Authors who frequently co-author on
papers (including repeatedly co-authoring with the
same person). (b) Authors who frequently co-
author with different people on papers.

We ranked the authors who submitted papers to arXiv
from 1995 to 2000 according to each of these measures and
evaluated each measure according to the number of award
winning authors it ranked highly. We identified 55 win-
ners of prestigious awards, including Nobel prize winners,
MacArthur Foundation fellows, Dirac fellows, Guggenheim
recipients, Fields medal winners, and Alfred P. Sloan Foun-
dation winners. Based on the number of award winners
listed in the top 100 of each ranking, we found that most of
the above measures performed about equally, finding around
10 award winners. Measures 1 and 2 did best, with 14 win-
ners. We therefore chose measure 1 to be our canonical
influence measure, noting that the raw total of citations
is also the one used by popular research tools1. Figure 7
shows the top authors and their citation counts. Heading
the list, Edward Witten is a MacArthur Foundation fellow,
a Fields medalist, and a Dirac fellow. Juan Maldacena, also
a MacArthur Foundation fellow, is a younger researcher and
looks quite likely to become the most cited author as he
continues his research. This table also includes a number of
other award winners.

Surprisingly, measures 10 and 11, which we constructed
to indicate an author’s consistency of success, performed

1 Citeseer: http://citeseer.nj.nec.com/mostcited.html and ISI Es-
sential Science Indicators: http://www.in-cites.com

Author Non-self citations # papers
Edward Witten 13806 59
Juan M. Maldacena 7334 39
Cumrun Vafa 6578 55
Nathan Seiberg 6258 45
Andrew Strominger 5371 44
Michael R. Douglas 5089 24
Igor R. Klebanov 5063 51
Joseph Polchinski 4815 25
Steven S. Gubser 4812 31
Ashoke Sen 4201 51

Table 7: Top-cited authors, based on papers 1995-
2000
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Figure 5: (a) Author influence vs. percent of pa-
pers published. (b) Author influence vs. distinct
co-authors

poorly on our validation task, identifying 2 or fewer win-
ners. Closer inspection shows that perfectionism is not the
key to success. The percentage of papers published in jour-
nals varied widely among award-winners, from 100% to 0%,
although the top 50% of influential authors did have a higher
rate (88%) of acceptance than the bottom half (67%). This
is shown graphically in Figure 5a. Percentage of papers
highly cited was better correlated with non-self citations
(see Figure 5b), but the measure performed poorly because
it placed authors with one of one paper highly cited above
those with 19 of 20 papers highly cited.

Figure 5b examines the correlation between citation count
and number of coauthors. As pointed to earlier, authors
with high citation counts write both frequently and widely.
Even in the middle of the scale, collaborating with 10-15
other people is typical. However, anyone with over 30 co-
authors is almost certain to be in the top 10%; presumably
one must be extremely well-regarded to be in that kind of de-
mand by collaborators. It is possible to have few co-authors
and still receive very high citation counts. In the top 10%
by non-self citation count, no one writes alone, and of the
top 100 authors, only one (Donam Youm) has fewer than
10 distinct coauthors. Table 6 displays the authors with the
highest co-author counts.

We wondered if a different combination of features could
identify a better measure of what differentiates award-winners
from other authors. To do this, we built an RPT using the
set of 55 award winners and a random sample of 55 non-
award winners. We performed 10-fold cross validation and
achieved an average accuracy of 78% with an area under
the ROC curve of 0.75. The tree chosen most frequently is
shown in Figure 6.

The first split in the tree, the author’s authority score, is
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Author authority score > 5.3E-7

Author has 0 non-self citations
between 1995 - 2000

Y
N

P(+) = 0.28

Y N

P(+) = 0.27 P(+) = 0.81

Figure 6: RPT built to predict award-winning au-
thors.

based on the authority score received when running the hubs
and authorities algorithm over the undirected co-author graph.2

This roughly correlates with authors who co-author frequently
and whose co-authors also co-authored frequently.

Informed by the features in the tree as well as by our
other analyses, we conjecture that some of the following
highly cited authors, from the tops of the lists but relatively
lacking in major awards, may soon be due for recognition:
Andrew Strominger, Igor R. Klebanov, Ashoke Sen, Arkady
A. Tseytlin, Paul K. Townsend, Gregory Moore, and Hirosi
Ooguri.

5. PUBLICATION ANALYSIS
Influential authors are more likely to have their papers

accepted by a journal. It is also clear from Figure 2 that
published papers receive more citations. With this in mind,
the third part of our analysis studied what other factors
affected journal acceptance and used the RPT to predict
journal acceptance as well as publication venue.
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Figure 7: (a) Number of published and unpublished
papers submitted to arXiv each year. (b) Number
of years between a paper’s submission to arXiv and
it appearing in a journal.

Approximately 70% of the papers in arXiv have been pub-
lished in a journal. Figure 7a shows the total number of pa-
pers submitted to arXiv each year for both published and
unpublished papers. Although the total number of papers
increases each year, the proportion of published and unpub-
lished papers remains relatively constant. Figure 7b shows
the distribution of the number of years between a paper’s
submission to arXiv and it appearing in a journal. Most

2This analysis applied the hubs and authorities algorithm to the
undirected co-author graph. Hub and authority scores are equiv-
alent on undirected graphs, and we choose to refer to the resulting
scores as ”authority scores”.

papers, if published at all, are published within one year of
submission to arXiv . A small number are published up to 4
years later.
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Figure 8: Characteristics that differentiate pub-
lished and unpublished papers. Figures a, b, and c
are from all published and unpublished papers from
1995 to 2000 inclusive. Figure d is from a sample
of 3000 papers (1500 published in Physics Letters B
and 1500 unpublished).

We analyzed the differences between the published and
unpublished papers in several ways and discovered signif-
icant effects. Several of these effects are shown in Figure
8. The most surprising difference is that published papers
usually have more than one author while unpublished pa-
pers are much more frequently written by a single author.
This is an example of degree disparity [4] , where the number
of relations differs significantly between objects with differ-
ent class labels. A second finding is that unpublished pa-
pers have fewer references on average than published papers.
Last, is that published papers have more pages than unpub-
lished ones. This correlates with the finding that published
papers are revised more frequently. Likely, as a paper is
revised, additional text is added and the number of pages
grows. It is also possible that the unpublished papers are
fleshed out to longer reports to send to a journal and then
are more likely to be accepted.

5.1 Predicting Publication
For this task, we trained two types of relational models,

RPTs and relational multiple-instance learning [9] (RMIL),
to predict whether a paper will be published in a journal.
As explained in section 3.3, our analysis is limited to papers
submitted to arXiv from 1995 to 2000. To classify a paper,
the models used only information available at the time that
the paper was submitted.

As a preliminary analysis, we attempted to differenti-
ate between unpublished papers and papers published in
Physics Letters B, the most common publication venue for
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arXiv papers. We sampled a set of 500 papers per year (3000
total), with equal proportion of published and unpublished
papers. Given the difficulty of this task, the RPT performed
well, with an average of 68% accuracy and 0.75 area under
the ROC curve. The model selected four attributes that dis-
criminate between unpublished and published papers: the
number of authors, the number of references, the paper’s
length and the paper’s filesize.

Figure 9a shows an example of a probability estimation
tree learned by the algorithm. According to the model, pub-
lished papers tend to have more authors and more references
than unpublished papers, illustrated in Figure 8a and b.

The algorithm also distinguished between published and
unpublished papers by size, measured in both kilobytes (KB)
and number of pages. Figure 8d shows the distribution of
paper length for published and unpublished papers in our
sample of 3000 papers. The graph clearly shows that most
Physics Letters B papers are between 5 and 15 pages in
length, whereas the unpublished papers have widely vary-
ing lengths. The tree (shown in Figure 9b) predicts that
papers over 16 pages in length and at least 13K in size were
unlikely to be published (P(+)=0.03). After browsing a
small subset of these papers on arXiv , it appears that the
unpublished papers in the sample are either workshop pa-
pers (short papers, few references) or theses (long papers, a
single author).

We also trained an RPT on the entire set of published
and unpublished papers, and had moderately successful re-
sults (0.70 area under the ROC curve). The sample for each
year had between 2300 and 3100 papers, and approximately
75% of the papers each year are published. The algorithm
learned similar trees as the one learned for the previous task.
As shown in Figure 8c, paper length is not as discrimina-
tive in this larger sample, which perhaps explain the lower
performance on this larger set.

For RMIL, we created random samples of 200 papers (100
published and 100 unpublished papers) per year. RMIL
achieved an accuracy of 61% with an average AUC of 0.61.
RMIL identified that papers with 2 authors, papers that
cited papers published in Nuclear Physics B, and papers
that were cross-posted to areas other than hep-th were all
more likely to be published.

5.2 Predicting Publication Venue
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Figure 9: (a) RPT to predict whether a paper will be
published in Physics Letters B. (b) RPT to predict
between two popular journals.

We also trained an RPT for a related task, to differenti-
ate between papers published in one of two popular journals
(Nuclear Physics B. Particle Physics, Field Theory and Sta-
tistical Systems, Physical Mathematics and Physical Review

D. Particles, Fields, Gravitation, and Cosmology). These
are two of the most prevalent journals in the arXiv data-
base. We expected this task to be challenging because ap-
proximately 55% of the papers were written by authors who
have publications in both journals.

For each year, we sampled a set of 480 published papers,
half of which were published in Nuclear Physics B and half
in Physical Review D. For this task, RPTs achieved an aver-
age accuracy of 73% and an average AUC of 0.81 (see Table
8 for complete results). An example tree is shown in Figure
9b. The authors’ publication history, the cited papers, and
paper length are useful features to differentiate between pa-
pers published in these two journals. For example, if over
50% of an author’s past papers were published in Physics
Letters D, and less than 60% of cited papers were published
in Nuclear Physics B, then the paper is unlikely to be pub-
lished in Nuclear Physics B (P(+)=0.14).

6. COMMUNITY ANALYSIS
The final part of our analysis focused on identifying re-

search communities by identifying groups of topics and the
authors who publish in those topics. Our first approach to
community detection was to use a conventional data clus-
tering algorithm that considered only the paper’s textual
information for grouping papers into topics. However, re-
search papers contain multiple sources of information for
identifying topics; both textual content and citation struc-
ture can be used for clustering the documents. Our second
approach used a clustering algorithm that combined citation
structure and data information. Our third approach to clus-
tering examined the topics formed naturally by considering
the papers associated with each journal as distinct topics.

For the text-only clustering, we clustered according to a
TFIDF based measure of document similarity. The clus-
tering algorithm is based on an extension to the Lemur
Toolkit3. We created six clusterings using both the full pa-
per text and the abstracts and varying the similarity thresh-
old. The resulting topics have higher intra-cluster citations
than expected by chance (i.e. papers cite papers within the
same topic more often than papers in other topics). How-
ever, the topic labels are not autocorrelated through journals
or authors. Since we expect authors and journals to publish
papers from a relatively small set of topics, we view this
lack of autocorrelation as evidence of poor topic detection
and focused on using the relational citation information to
produce better clusters.

Research topics should be identifiable through groups of
papers with similar terms and many intra-group citations.
The web retrieval community has proposed a number of clus-
tering algorithms that attempt to exploit both document
contents and link structure to automatically group web doc-
uments into topics. One approach is to define a new similar-
ity metric between documents that incorporates link struc-
ture and then use standard data-clustering algorithms (e.g.
[16], [10]). Another approach is to weight the web graph
with term similarities and use conventional graph clustering
algorithms (e.g. [2]). We use the latter approach to cluster
hep-th research papers.

We based our second approach on previous work by [15] on
spectral partitioning algorithms using a normalized cut ob-
jective function. We use the citation graph to cluster papers,

3For more information, see http://ciir.cs.umass.edu
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but modulate the strength of citation relationships by the
semantic relationship indicated through content similarity.
Our algorithm is quite similar to the approach used by [2] to
identify topics in sets of retrieved web pages. However, they
incorporate additional non-local link information into their
similarity metric through summary co-citation information.
We expect our algorithm to identify communities: groups of
papers that have similar content and are also highly inter-
connected.

We clustered a sample of 833 papers from the hep-th data-
base containing all papers in the years 1995-2000 with more
than 50 non-self citations. Our intention was to sample a
small set of authoritative papers that are likely to define
topics. The algorithm used the portion of the citation graph
that involved the 833 papers, weighted by the cosine simi-
larity between paper abstracts.

Journals may be useful for detecting topics because it
is common for journals to specialize and focus on research
in specific sub-fields. To investigate this, we examined the
20,826 papers in hep-th that have journal information avail-
able and clustered those papers into distinct topics as de-
termined by journal of publication. We eliminated clusters
that were too small to represent meaningful topics by re-
quiring that clusters contained at least 0.05% of the papers
in the collection.

6.1 Community detection
The spectral clustering technique, which examines both

content and citation information, produced 14 clusters vary-
ing in size from 2 to 285 papers. The number of papers in
each cluster is shown in Figure 10A. Table 8 includes ran-
domly selected titles from four examples clusters for subjec-
tive evaluation.

Our goal in this task was to identify communities of re-
search. Authors write multiple papers on the same topic
and are more likely to collaborate with other authors from
the same community. Journals generally focus on a small
number of topics and often specialize in particular topics.
Because of this, we expect research communities should be
identifiable through authors and journals, in addition to pa-
pers.

As a preliminary assessment of topics detection, we eval-
uated the correlation of clusters labels through authors and
journals. Paper topic is correlated with journal (corr=0.58).
Paper topics are autocorrelated through journals (corr=0.56)
and through authors (corr=0.54). These correlations indi-
cate that topics are associated with particular journals, that
journals are associated with particular topics and that au-
thors are associated with particular topics. This is evidence
that the topics successfully identify communities of research.
Figure 10b illustrates the autocorrelation of topic through
authors graphically, plotting the number of distinct topics
per author. These data are measured over all 478 authors
associated with the sample of 833 papers.

Because topics are autocorrelated through authors, we can
use the clusters to naturally partition the authors into com-
munities as well. To cluster the authors in relation to the
paper clusters, we assigned each author to the their most
prevalent cluster based on authorship. Ties were broken
randomly. Each cluster in Table 8 is labeled with the most
authoritative author associated with the cluster. We asso-
ciated journals with topics in the same way, assigning each
topic to its most prevalent journal. The associated journals

Cluster 2 : Sumit R.Das (251), Physical Review D
Absorption of Fixed scalars and the D-brane Approach to
Black Holes; Universal Low-Energy Dynamics for Rotating
Black Holes; Interactions involving D-branes; Black Hole
Greybody Factors and D-Brane Spectroscopy
Cluster 7 : Gary T.Horowitz (588), Physics Letters B
On D-Branes and Black Holes in Four Dimensions; The
Black Branes of M-theory; Counting States of Near-
Extremal Black Holes; Internal Structure of Black Holes
Cluster 10 : Juan M. Maldacena (1924), Journal of High

Energy Physics
Field theory models for tachyon and gauge field string dy-
namics; Super-Poincare Invariant Superstring Field The-
ory; Level Four Approximation to the Tachyon Potential
in Superstring Field Theory; SO(32) Spinors of Type I and
Other Solitons on Brane-Antibrane Pair
Cluster 13 : Ashoke Sen (4683), Nuclear Physics B
Dynamics of Anti-de Sitter Domain Walls; Gravitational
Stability and Renormalization-Group Flow; String Theory
on AdS3; The Holographic Bound in Anti-de Sitter Space

Table 8: Example paper titles grouped together by
spectral clustering. The authors shown are those
with the highest number of non-self citations to pa-
pers in the cluster (with this number in parenthe-
ses).

are listed along with authors in Table 8.
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Figure 10: (a) number of papers per cluster, (b)
Association of authors to paper clusters.

6.2 Topic analysis
We analyzed the topic clusters in several ways. We ex-

pect authors to cite papers within their own topic more than
papers outside of the topic. For each of our topic cluster-
ings, we calculated the actual and expected proportion of
intra-cluster citations for each cluster. We define the actual
proportion of intra-cluster citations for a cluster, C, as:

#of citations from C to C

the total number of citations from cluster C
.

We define the expected proportion of intra-cluster citations
for a cluster, C, as:

the total number of papers in cluster C

the total number of papers in the collection
.

The expected proportion represents the proportion of intra-
cluster citations we would expect given a uniform clustering
across all topics.

Figure 11a shows the expected and actual intra-cluster ci-
tation proportions for the spectral clustering. For all but
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the smallest cluster, the proportion of intra-cluster citations
is significantly higher than the expected values. This is not
surprising, since the spectral algorithm is designed to min-
imize the normalized weighted-cut across clusters. We also
calculated intra-journal citations in a similar manner. Fig-
ure 11b shows the expected and actual intra-journal citation
proportions for each journal. As with the topic clusters, the
actual intra-citation values deviate significantly from the ex-
pected values.The difference between the actual and the ex-
pected intra-clustering values demonstrates that the topics
are cohesive with respect to citation patterns.
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Figure 11: (a) Expected and actual intra-clustering
citation ratios for spectral clustering (b) Expected
and actual intra-journal citation ratios.
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Figure 12: (a) Intra-cluster document similarity (b)
Intra-cluster coauthor frequency.

To evaluate intra-textual similarity we averaged the cosine
similarity across all pairs of documents within each cluster.
As a baseline measure we averaged the cosine similarity be-
tween papers in a given cluster and all papers in the sam-
ple. Figure 12a plots the intra-cluster averages compared to
the averages considering papers outside the cluster. For all
but the largest cluster, the intra-cluster cosine similarity is
much higher than expected, demonstrating that the topics
are cohesive with respect to content. Average similarity may
not the best measure to evaluate large clusters. Even when
drawn from the same topic, it will be unlikely that all pairs
of papers have similar content.

To evaluate whether the authors are more likely to col-
laborate within the clusters, we analyzed the coauthor links
within clusters to see if the proportion of coauthor links
within clusters was higher than expected. Figure 12b shows
the expected vs. actual proportion of intra-cluster coauthor
links. The zero value for cluster 4 is due to the fact that
no authors were assigned to cluster 4 as their primary area.

Collaboration is significantly higher with these clusters than
would be expected by chance. This result further validates
the claim that the spectral clustering has successfully iden-
tified research communities.

7. CONCLUSIONS
Based on our analysis, theoretical high-energy physics ap-

pears to be a healthy scientific community. Both the cita-
tion and authorship graphs reflect a pattern of tightly knit
communication via the formal and informal scholarly litera-
ture. The community publishes a large numbers of papers,
and the temporal pattern of citations indicates the rapid
uptake and use of relevant new work. Despite the existence
of “stars” such as Edward Witten, the papers of individual
authors can vary greatly in their authority scores, indicating
that papers are cited more for their innovative content than
the pre-existing prominence of their author.

This analysis raises the possibility, already explored by the
field of scientiometrics [14], of assessing and comparing the
health of different scientific communities and subcommuni-
ties. The statistical techniques under development within
relational learning offer an improved toolbox for the study
of scientific networks, particularly as reflected in patterns of
publication, citation, and downloading. Central to our anal-
ysis in this paper were: 1) techniques for calculating mea-
sures that use a combination of the attributes and structural
of a relational data set; and 2) algorithms for learning statis-
tical models that search a vast space of possible structures
and parameter values to select those features most predic-
tive of an attribute of interest. Both of these classes of
methods allowed simultaneous consideration of multiple ob-
ject and relation types, rather than only a single object and
relation type, as is common in much prior work in citation
analysis. Finally, consolidation of authors was important to
the analysis above, and the relational structure was a strong
contributor to how authors were consolidated.
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APPENDIX

A. CREATING THE SCHEMA
The data available for task 4 was in the form of LATEX files,

text abstract files, and the paper citations. From the abstract
files, we extracted paper properties such as title, file size, jour-
nal reference, and submission dates. We used the earliest of the
revision dates and the SLAC date as the best estimate of author-
ship date. Author names and institutions were parsed out of the
Authors field, and the email address of the submitter was asso-
ciated with the best-matching author name. Since institutions
were not in a standardized format, we used the domain name of
the submitter email address as a surrogate. Since the same au-
thors, journals, and domains appear many times, we pulled them
out into separate objects.

Journals were consolidated by hand; that is, we looked up
their full names from the abbreviations, and coalesced differently-
spelled references into the same object. The domains were given

Author 1 Author 2

Author 3

Co-AuthoredCo-Authored

similar_name
Author 1 Author 2

Paper 2Paper 1

Authored

similar_name

Cites

Authored

Author 1

Email
Domain 2

Author 2

Email_affiliation

similar_email_domain

Email_affiliation

same_username

Email
Domain 1

(a) (b) (c)

Figure 13: Relational evidence of duplicate au-
thors. (a) Authors with a similar name who have
co-authored with the same third-party. (b) Authors
who have cited a paper written by an author with
a similar name. (c) Authors with similar email do-
mains and the same username.

similarity links based on matching suffixes to facilitate identify-
ing distinct institutions, and for use during author consolidation.
We performed a nominal amount of hand data cleaning to cor-
rect for spelling errors or problems in formatting from the original
submission form.

B. AUTHOR CONSOLIDATION
Before analyzing the authors, we needed to identify duplicate

author entries. Many hep-th authors publish under variants of
the same name, e.g., “E.M.C. Abreu” and “Everton M.C. Abreu”;
with other pairs like “J. Adams” and “J.A. Adams”, the number
of distinct identities was unclear. We began with the assumption
that no two people had submitted papers under the same name
(although this is rare, we did find a small number of instances in
hand-checking the most frequent last names). We labelled pairs
as similar if, after correcting for inconsistencies in punctuation
and accents, the last names and the first initial of the first names
matched. Of the initial 13,185 distinct author names, over 7500
had candidate matches to others.

Possible evidence for duplicate authors came from several sources.
First, authors had to have similar names, and co-authors could
never be consolidated. Another piece of evidence arose from au-
thor email addresses: using the same email address for multiple
papers meant the authors were likely to be the same person. This
was not conclusive evidence, because we found instances of people
sharing email addresses. If a candidate pair’s last name was rare
(i.e. of the whole database, was only found on these two peo-
ple), this boosted the evidence. For example, a number of people
matched on the last name “Lee”, but the only two authors with
the last name “Znojil”.

We also identified evidence for duplicate authors based on the
relational neighborhood of the authors, as depicted in Figure 13.
If two authors with similar names had each coauthored with the
same third person, the two were likely to be the same person.
Similarly, since people frequently cite their own work, we reasoned
that if an author cites someone with a similar name, the two
may well be the same person. Last, if two authors had the same
username at similar email domains, this was considered to be
comparable to using the same email address.

Using these guidelines, we iteratively identified and consoli-
dated duplicate authors until quiescence. Because evidence in-
volving third party authors was often not available until the
third parties had themselves been merged correctly, this took five
rounds of consolidation. At completion, we had 9200 distinct
authors. Due to the noisy nature of the data, the final author
set is not likely to be perfectly accurate, but as an example, it
correctly merged all eight variations of the name “Ian Kogan,”
and of the top ten authors from Table 7, they were spread across
11 author objects (i.e. one mistake) instead of an initial 28. In
addition, while the initial author graph contained 2206 connected
components, after consolidation that number decreased to 1269.
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Abstract

This paper introduces an approach for identify-
ing predictive structures in relational data using
the multiple-instance framework. By a predictive
structure, we mean a structure that can explain a
given labeling of the data and can predict labels
of unseen data. Multiple-instance learning has
previously only been applied to flat, or proposi-
tional, data and we present a modification to the
framework that allows multiple-instance tech-
niques to be used on relational data. We present
experimental results using a relational modifica-
tion of the diverse density method (Maron, 1998;
Maron & Lozano-Ṕerez, 1998) and of a method
based on the chi-squared statistic (McGovern &
Jensen, 2003). We demonstrate that multiple-
instance learning can be used to identify predic-
tive structures on both a small illustrative data set
and the Internet Movie Database. We compare
the classification results to ak-nearest neighbor
approach.

1. Introduction

Identifying useful structures in large relational databases is
a difficult task. For example, consider the task of predict-
ing which movies will be nominated for academy awards
every year. The Internet Movie Database (IMDb) con-
tains about one hundred movies that were nominated for
academy awards in the time period 1970 to 2000 and thou-
sands of movies that were not nominated in this time pe-
riod. We would like to identify relational structure from a
set of positive and negative examples (e.g., the structure
surrounding nominated and non-nominated movies) that
can explain known labels and predict labels for unseen data.
Specifically, given the schema for the IMDb shown in Fig-
ure 1, we would like to identify some substructure that can
predict which movies will be nominated and which movies
will not be nominated. An example substructure could be
a movie where one of the actors was previously nominated

MovieStudio

Release

Genre

PersonAward

MadeBy

ReleaseOf

OfGenre

Directed,Produced,
ActedInNominated

Awarded

RelatesTo

country
month

...

Figure 1. Schema that we used for the IMDb

for an academy award. Such structures are useful not only
for classification and prediction tasks but also for better un-
derstanding of large relational databases.

Multiple instance learning (MIL) (details of MIL are given
in Section 2) is a promising framework for identifying pre-
dictive structures in large relational databases. First, MIL
methods are designed for learning from ambiguous and
partially labeled data. With relational data, it is often easy
to label a collection of objects and their relations. However,
labeling each individual object and relation by its contribu-
tion to the overall situation is more difficult. For exam-
ple, we can obtain the labels for the movie subgraphs by
noting whether the movie was nominated for an academy
award, but it would be difficult to label each actor and stu-
dio by their individual contribution to whether the movie
was nominated for an award. Second, multiple-instance
(MI) techniques are designed to identify which part of the
data can explain the labels. For example, the relations in
the movies example could contain all related movies, re-
leases, studios, etc., for each nominated movie, but the best
concept might only use the studio and producers linked via
a movie.

MIL has been used successfully in a number of applica-
tions using propositional data (Amar et al., 2001; Diet-
terich et al., 1997; Goldman et al., 2002; Maron, 1998;
Maron & Ratan, 1998; Zhang & Goldman, 2002; Zucker

95

95



& Chevaleyre, 2000). However, none of these techniques
have examined MIL approaches for relational data even
though the data set used in the introductory MIL paper (Di-
etterich et al., 1997) was relational (it was flattened into
feature vectors to solve the task). By working with the
data in relational form, we can detect structures that can-
not be represented in a feature vector format. For example,
a link between two related movies where the movie’s pro-
ducer was also nominated for an academy award for a pre-
vious movie would be very difficult to represent in propo-
sitional data, especially if the form of the final structure
is not known in advance. Simply flattening the relational
data (into homogeneous feature vectors) presents a number
of problems. The homogeneity of the resulting data either
means data duplication (which will affect probability esti-
mation) or data loss through aggregation.

2. Notation and background

We use the PROXIMITY 1 system to represent, store, and
query relational data sets. LetG = (v,e) be a graph. Ob-
jects in the world, such as people, places, things, and
events, are represented as vertices in the graph. Relations
between these objects, such asacted-in(actor, movie)are
represented by edges. In general, if there is a relation
r(o1,o2), theno1,o2 ∈ v andr ∈ e. In PROXIMITY , vertices
are called objects and relations are called links. Both ob-
jects and links can have multiple attributes associated with
them. For example, using the schema shown in Figure 1,
movies, people, genres, etc., are all objects. Relationships
such asawarded(movie, best-picture)are links. Attributes
can be associated with objects, such asmovie.name, or
links, such asawarded.award-status. PROXIMITY allows
us to query the database using a graphical query language
called qGraph (Blau et al., 2002). qGraph provides a form
of abstraction on top of SQL by allowing us to construct
visual queries of the graphical database. Queries return a
collection of subgraphs and not just a set of database rows.

An MI learner uses labeledbagswhere a bag is a collection
of instanceswith one label for the entire collection. Aposi-
tive bagcontains at least one instance of thetarget concept
while a negative bagcontains none. With flat data, both
instances and target concepts are points in feature space.
With relational data, both instances and target concepts are
graphs, or relations among a (heterogeneous) set of objects.
The goal is to find a concept that explains the labels for the
bags and can be used to predict labels for unseen data. It
is not known in advance which instance caused the bag to
be labeled as positive. If this were known, a supervised
learning approach could be used instead.

1For additional details on PROXIMITY , see
http://kdl.cs.umass.edu.

We present an approach to adapting the MIL framework
for use with relational data where bags are collections of
graphs. The instances in the bag can be either explicitly
enumerated as a set of graphs or they can be the set of
(implicit) subgraphs of a single, larger, graph. The struc-
ture of the relational data determines which representation
is most appropriate. If the data consist of sets of disjoint
graphs, such as theMUSK task where each conformation
of a molecule could be represented as a separate graph,
then it is better to explicitly enumerate the instances in each
bag. If the data consist of a large connected database, such
as IMDb, then a bag consisting of single large graph can
be easily created by querying the database. For example,
in IMDb, the bags for the movies nominated for academy
awards can be created by querying for all objects connected
to a nominated movie by one or two links.

For the MI notation, we follow that of Maron (1998) and
Maron and Lozano-Ṕerez (1998). The set of positive bags
is denotedB+ and theith positive bag isB+

i . Likewise, the
set of negative bags is denotedB− and theith negative bag
is B−

i . If the discussion applies to both types of bags, we
drop the superscript and refer to it asB. The jth instance
of the ith bag is denotedBi j . The target concept is denoted
ct and other concepts asc. With flat data, a concept is a
point in feature space. With relational data, a concept is an
attributed graph.

3. MI learning on relational data

The data available to an MI learner is a set of positive and
negative bags,B+ andB−. If the concept is a feature vec-
tor v, then each bag consists of a set of feature vectors:
Bi = {vi1,vi2, . . . ,vik}. The most straightforward transfor-
mation to apply MIL to relational data is to have each in-
stance represented as a separate graph. In this case, a bag
would consist of a set of graphs:Bi = {Gi1,Gi2, . . . ,Gik}.
The goal is then to find a concept that can explain the la-
beling of the bags. The concept,c, is a subgraph of one the
graphs inB+ andB−. This representation is best suited for
tasks where the data are already available as a set of dis-
joint graphs. TheMUSK data set (Dietterich et al., 1997),
image recognition tasks (Maron & Ratan, 1998), and the
mutagenesis data set (Zucker & Chevaleyre, 2000) fit into
this framework.

When the relational data are available as a large connected
graph instead of a set of unconnected graphs, it may be eas-
ier to identify a single subgraph as containing something
positive instead of enumerating every instance. For exam-
ple, in the IMDb, we can hypothesize that there is some
relational structure surrounding movies that could be used
to predict whether a movie gets nominated for an academy
award. Without knowing the structure in advance, it would
be very difficult to create bags of every possible struc-

96



ture. However, it is relatively easy to identify the depth-two
structure surrounding the movies and to use this to create
bags where each bag has only one graph. The instances are
assumed to be the set of all subgraphs of the single graph
in the bag.

More formally, we propose to create the set of bagsB+

and B− such thatBi = {Gi} whereGi is a single (large)
graph. The instances ofBi are assumed to be the set of all
subgraphs ofGi . Since the size of this set is exponential
in the size ofGi , where|Gi | is defined as the sum of the
number of vertices and edges inGi , we do not explicitly
enumerate the instances for each bag. Instead, the search
methods take into account this assumption.

3.1. Relational diverse density

Several existing MI methods can be transformed to work
with relational data. We adapt both diverse density (Maron,
1998; Maron & Lozano-Ṕerez, 1998) and chi-squared (Mc-
Govern & Jensen, 2003). We first briefly review the defini-
tions for diverse density. The most diversely dense concept
is defined as that which is closest to the intersection of the
positive bags and farthest from the union of the negative
bags. More precisely, Maron defines the diverse density of
a particular conceptc to be: DD(c) = P(c = ct |B+,B−).
We refer toP(c = ct) as P(c) to simplify the equations.
Using Bayes rule and assuming independence, this can be
reduced to finding the conceptc for which the likelihood:
∏1≤i≤nP(c|B+

i )∏1≤i≤mP(c|B−
i ) is maximal. The proba-

bility that conceptc is the target concept given the evi-
dence available in the bag,P(c|Bi), still needs to be de-
termined. Maron discusses several ways to do this. In this
work, we follow his suggestion of using a noisy-or model
(Pearl, 1988), in which case we have:

P(c|B+
i ) = 1− ∏

1≤ j≤p

(1−P(B+
i j ∈ c)) (1)

P(c|B−
i ) = ∏

1≤ j≤p

(1−P(B−
i j ∈ c)), (2)

wherep is the number of instances in bagBi andP(Bi j ∈ c)
is the probability that the specified instance is in the con-
cept.

CalculatingP(Bi j ∈ c) requires a specific form of target
concept. In the case of flat data, Maron often used what
he called the single-point concept which is a point in fea-
ture space. With this concept, the calculation ofP(Bi j ∈ c)
is based on the Euclidean distance between pointsBi j and
c in feature space. We need to defineP(Bi j ∈ c) whenBi j

and c are both attributed graphs instead of points in fea-
ture space. To do this, we need a method for measuring the
distance between two attributed graphs.

Metrics for measuring the distance between attributed
graphs are not as well studied as metrics for flat data.

We use the metric proposed by Bunke and Shearer (1998)
which is based on finding the maximal common subgraph
(MCS) between two graphs. They demonstrate that this
distance measure satisfies the metric properties. The dis-
tance between two graphsG1 andG2 is defined as:

d(G1,G2) = 1− |MCS(G1,G2)|
max(|G1|, |G2|)

(3)

whereMCS(G1,G2) is the maximum common subgraph of
G1 andG2. This metric was developed for unlabeled graphs
but can be modified so that the MCS also uses the attributes
to limit the number of matches. A disadvantage of this met-
ric is that computing the MCS is exponentially complete.
In the course of a thorough search in concept space, MCS
is calculated frequently. We approximate the calculation
by limiting the depth of the recursive search. Research on
a principled polynomial-time distance metric for attributed
graphs is a topic for future work. Based on this metric, we
defineP(Bi j ∈ c) as:

P(Bi j ∈ c) =
|MCS(Bi j ,c)|
min(|Bi j |, |c|)

(4)

Note that Equation 4 is a slight modification of Equation 3
where the maximum is replaced by a minimum. Since we
are searching for the best subgraph, it is better to weight the
match by the size of the proposed subgraph rather than by
the size of the instances or of the bag, which could be arbi-
trarily large. If the instances in the bag are not enumerated,
P(c|Bi) becomes:

P(c|B+
i ) =

|MCS(c,B+
i )|

min(|c|, |B+
i |)

(5)

P(c|B−
i ) = 1−

|MCS(c,B−
i )|

min(|c|, |B−
i |)

. (6)

This means that the probability thatc is the correct con-
cept given the evidence available in positive bagB+

i is the
percent match of graphc to graphB+

i . Likewise, the prob-
ability that c is the correct concept given the evidence in
negative bagB−

i is one minus the percent match of graphc
to graphB−

i . In other words, ifc matches highly withB+
i ,

the probability thatc is correct will be high but if it matches
highly with B−

i , the probability thatc is correct will be low.

3.2. Relational chi-squared method

In addition to diverse density, we present results using the
chi-squared MI method (McGovern & Jensen, 2003). Chi-
squared is simpler to calculate than diverse density and it
allows for a more thorough search of the concept space
because it provides a guaranteed pruning method. Chi-
squared is calculated by filling in the contingency table
shown in Table 1. The rows of the table correspond to the
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Table 1. Contingency table used by the chi-squared method. The
cells are filled in using the predicted and known labels for the
training bags using the proposed concept.

Actual
Bag label

+ -
Predicted + a b
bag label - c d

predicted label from the concept and the columns corre-
spond to the actual labels for the training bags. Assuming
a method for labeling the bags given a proposed target con-
cept, the table is filled out in the following manner. If the
concept predicts that the bag will be positive and it is pos-
itive, a is incremented. If the prediction is positive but the
bag is really negative,b is incremented. If the prediction is
negative and the bag is positive,c is incremented. Finally,
d is incremented if the concept predicts negative and the
bag is negative. Chi-squared is calculated by summing the
squared differences for the expected values in each cell of
the contingency table versus the observed values.

The best concept is defined as that with the highest chi-
squared value. This will occur when the mass is concen-
trated on the main diagonal (e.g., ina andd) which means
that the concept is predicting the most positive and the most
negative bags correctly. More information about the chi-
squared evaluation function for MIL can be found in (Mc-
Govern & Jensen, 2003).

4. Experimental results: illustrative data set

We first present results using a small illustrative database
where we both know the target answer in advance and can
easily visualize the data. The objects and links each have
one real-valued attribute associated with them. The target
concept, shown in Figure 2, is a size-three clique with a
particular set of attribute values on the objects and links.

We illustrate both chi-squared and diverse density using
both data representations and this target concept. In both
cases, graphs, including objects, links, direction of the
links, and attributes, were generated randomly. To cre-
ate a positive instance, a graph was randomly grown from
the target clique. Negative instances were randomly grown
from an empty graph. Attribute values from the target con-
cept can be used in negative instances so long as the entire
concept is not included. For the first data representation,
both positive and negative graphs varied in size from three
to ten objects with the same number of random links. Each
positive bag had one positive instance and from two to six
negative instances. Negative bags contained from three to
seven negative instances. A sample positive instance and

1.0

3.0 2.0

1.0

2.0

3.0

Figure 2. Target concept for the illustrative data set

a sample negative instance are shown in Figure 3a. The
bags for the second data representation, which contained
only one instance per bag, varied in size from ten to twenty
objects and had twice as many random links as there were
objects. Example positive and negative bags for this frame-
work are shown in Figure 3b. In both cases, we generated
twenty positive bags and twenty negative bags.

For this experiment, we compared the relative prediction
accuracies for the relational diverse density approach, the
chi-squared technique, and thek-nearest neighbors (kNN)
method. We repeat this comparison for both data repre-
sentations. For the diverse density and chi-squared ap-
proaches, the MI learner identified the best concept (or set
of concepts) for predicting the bag labels. Given a rela-
tional conceptc and a bagBi with an unknown label, the
predicted real-valued label is:

label= max
1≤ j≤k

P(Bi j ∈ c) = max
1≤ j≤k

|MCS(Bi j ,c)|
min(|Bi j |, |c|)

.

If there is only one graph in the bag, this becomes:

label=
|MCS(Bi ,c)|
min(|Bi |, |c|)

.

Under this formulation, the predicted label for the bag will
be a real number in the interval[0,1]. A prediction of zero
means the bag should be labeled as negative and a predic-
tion of one means that the bag should be labeled as positive.
Values in the range[0,1] are also possible and we examine
the best choice of thresholds through the use of an ROC
curve that measures the ratio of true positives to false posi-
tives as the threshold varies from zero to one.

We used kNN as a baseline for comparison. We identify
thek nearest neighbors using the distance metric specified
in Equation 3. Because the true labels for the individual
instances are unknown, multiple instances in a bag are all
assumed to have the same label as the bag. If the instances
are not individually enumerated, we assign the label to the
graph representing the bag itself and use this larger graph
for the kNN calculations. We modify the prediction mech-
anism of kNN in the following manner. For each instance
in an unlabeled bag, we determine the ratio of positive in-
stances in thek nearest instances. The most extreme of
these ratios weighted by the number of different positive or
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A: Sample instances in a bag
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Figure 3. A: Example instances for the three-clique task for the
representation where each instance is enumerated. The target con-
cept is shown with dashes. B: Example bags for the three-clique
task for the representation where each bag consists of a single
large graph.
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Figure 4. ROC curve comparing the performance of chi-squared,
diverse density, and kNN on the illustrative data set. In this case,
each bag had an enumerated set of instances.

negative bags that contributed to the ratio is chosen and the
ratio itself (without the weighting) is output as the label.
The idea of weighting the ratio this way is related to di-
verse density and helps to make kNN a higher performing
baseline for comparison.

Figure 4 shows the ROC curves for relational diverse den-
sity, chi-squared, and two values ofk for kNN for the first
data representation, where there are multiple enumerated
instances per bag. These numbers are averaged over 10-
folds of cross validation. The test set for each fold was
2 positive bags and 2 negative bags and the training set
was the remaining 18 positive bags and 18 negative bags.
The chi-squared method identifies the correct target con-
cept each time and had perfect prediction for this task. We
do not claim that the chi-squared method will always have
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Figure 5. ROC curves for the illustrative data set where each bag
had one large graph.

perfect performance but it was able to quickly find the tar-
get concept for this task. The relational diverse density ap-
proach sometimes found a subset of the true concept which
gave it a small false positive rate depending on the thresh-
old chosen to differentiate between positive and negative
predictions. The two kNN approaches shown had higher
accuracy than diverse density for very high thresholds but
quickly degraded in performance while diverse density was
more robust to threshold changes. At a threshold of 0.5,
the accuracies were: chi-squared = 100%, diverse density
= 85%, and kNN = 80% and 70% fork = 4 andk = 20.
Accuracy is the percent of bag labels in the test set that are
predicted correctly.

Figure 5 shows the ROC curve for the same three meth-
ods in the case where each bag had only one large graph in
it. With a threshold of 0.5, chi-squared had 100% accuracy,
diverse density had 92.5% accuracy, and kNN had 70% and
50% accuracies fork = 3 andk = 10. These results are
comparable with those presented above and demonstrate
that both data representations can be used successfully for
MIL on relational data. Our next experiments focus on a
much larger database.

5. Experimental results: IMDb

The IMDb is a much larger database with one million ob-
jects and nearly five million links. This is a large database
where the ability to identify predictive structures should
help us to better understand the nature of the database. The
two tasks that we present are: predicting which movies will
be nominated for academy awards and predicting which
movies will gross at least two million dollars (adjusted for
inflation) during opening weekend. Both of these tasks are
very difficult and if there were a perfect predictor of movie
success, then studio executives would have identified it al-
ready. Also, both tasks rely on an unknown number of fac-
tors which may not all be in the database (e.g., Hollywood
politics are not included in IMDb). However, the difficulty

99



[0..]

[0..]

[0..]

[0..]

Movie

Studio
[0..]

Release
OWgross >= $2,000,000

[1..]
Genre
[0..]

Director

DirAward
[0..]

Producer

ProdAward
[0..]

Actor/Actress

Movie2
Award
[0..]

Movie2

ActorAward
[0..]

MadeBy

OfGenre ReleaseOf

ProducedDirected

Awarded/
Nominate

Awarded/
Nominated

Awarded/
Nominated

Awarded/
Nominated

ActorIn OR
ActressIn

RelatesTo

Release
[0..]

ReleaseOf

Query constraints:
movie2.year, release.year, Actor-award.year< movie.year
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Figure 6. qGraph query used to identify high-grossing movies and
to create the positive bags. Dashed circles indicate the query re-
striction and number ranges indicate the minimum number of ob-
jects required for a match.

of the tasks provides a good challenge for our approach.

5.1. High-grossing movies

The IMDb is a large connected database and thus corre-
sponds to the second data representation where each bag
contains only one instance. We created the bags by query-
ing the database using the qGraph query shown in Figure
6. This query is the depth-two structure surrounding high-
grossing movies with the exception that we do not follow
links from studios. Studios typically make hundreds of
movies and following those links would lead to unneces-
sarily large graphs. This query returns a set of subgraphs
from the database that match the specified structure. In
particular, each subgraph will contain a central movie ob-
ject and its related release objects where at least one re-
lease grossed more than 2 million dollars on opening week-
end. In addition, any associated studios, genres, producers,
directors, actors/actresses, and related movies will be in-
cluded in each subgraph. If any of the producers, direc-
tors, actors/actresses, or related movies have award objects
linked to them, these will also be included. Finally, the
graph is pruned to remove any events that occurred after
the movie’s release. This is necessary because we want
the structures that the MI learner identifies to predict for-
ward in time. To help minimize noise and the size of the
data, we further restrict the set to only contain movies from
1970 to 2000. We randomly sampled this set to obtain ap-
proximately 200 positive instances. We reused the same
query structure to generate the negative bags except that
the releases on opening weekend were restricted to gross
less than 2 million dollars. There are a considerable num-
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Figure 7. ROC curves comparing the false positive and true posi-
tive ratios for the chi-squared MI technique and kNN on the task
of predicting high-grossing movies.

ber of such movies so we randomly subsampled to obtain
approximately 200 negative bags.

We again ran 10-fold cross validation and obtained predic-
tions for the unseen positive and negative bags from the top
five percent of the concepts identified by MIL where the
concepts are ranked by their chi-squared values. The in-
ability to prune with diverse density hinders its use on such
a large data set so we used only the chi-squared approach.

Figure 7 shows the results of this experiment using ROC
curves. The chi-square method was able to detect several
substructures that predicted high-grossing movies. The re-
sults shown in this graph are for the most highly ranked
concept on each of the 10 folds, labeled chi-squared TOP,
and for the top 5% of the concepts, labeled chi-squared OR.
In the latter case, each concept outputs a separate prediction
and we used the OR, or max, of these predictions. Although
MIL has slightly lower performance in the region of the
ROC curve with higher true positives but also higher false
positives, its performance is better than kNN in the region
with lower false positives and higher true positives. Also,
its performance only degrades as the threshold is dropped
almost to zero while kNN is less robust to the threshold
value. With a threshold of 0.5, chi-squared TOP achieves
an accuracy of 69.2% and chi-squared OR has a 70.1% ac-
curacy. kNN’s accuracies are 61% and 53.6% for k = 1
andk = 10. With this prediction mechanism, studios could
better allocate money to movies. As we said in the begin-
ning of this experiment, predicting high-grossing movies
is a difficult task and it is unlikely that any learning agent
could achieve high accuracy.

One of the other benefits of using MIL on this database,
besides prediction accuracy, is that the answers are in the
form of understandable structures. Figure 8 shows some
of the top structures for predicting high-grossing movies.
It seems that movies are more likely to be high-grossing if
they are related to two or three other movies (e.g. a movie
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Figure 8. Top predictive relational structures identified by the MI
learner on the high-grossing movie task.

in a series likeStar Trekor Indiana Jonesor movies that
remade previous successful movies). Another predictive
structure that the chi-squared MI learner identified was a
movie related to another movie that was both nominated
and awarded an academy award for best picture. Last, just
the presence of a best picture award object in the subgraph
was predictive of movie success.

5.2. Movies nominated for academy awards

We repeated the same experiments for the difficult task of
predicting which movies will be nominated for academy
awards each year. The query used to generate the positive
bags is shown in Figure 9. The structure of this query is
identical to that discussed for high-grossing movies except
that we require an academy award nomination. The posi-
tive bags do not actually contain the award objects for the
central movie because we want MIL to identify predictive
structures. This query yields 72 positive bags. We use the
same query minus the requirement for the awards to cre-
ate the negative bags. The number of movies which are
not nominated for academy awards is quite large and we
randomly sample this set to obtain approximately the same
number of negative bags (74).

We again compare the predictive ability of chi-squared to
kNN on 10-fold cross validation with this data set. These
results are shown in Figure 10, again using ROC curves. In
this case, the structures found by the MI learner dominate
any of the predictions from kNN for all values ofk (We
show two of the best values ofk in the figure). Assuming
a threshold of 0.5, the accuracy of chi-squared TOP is 93%
and the accuracy of chi-squared OR is 77%. kNN has an
accuracy of 49.7% and 50.7% fork = 5 andk = 10.

We also examine the relational structures that the MI
learner identified as predictive of whether a movie will be
nominated for an academy award. Some of the top struc-
tures are shown in Figure 11. For this task, it seems that
movies with at least 20 actors in them are more likely to be
nominated for academy awards. This is surprising and is
likely due to a reverse effect that better movies have more
information in IMDb which means they tend to have more
actors associated with them. A related structure has the
same form but restricts the genre to drama. These structures
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Figure 9. qGraph query used to create the positive bags for
the task of predicting which movies will be nominated for an
academy award.
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Figure 10. ROC curves for the task of predicting which movies
will be nominated for academy awards.

may not help a studio executive to better allocate money to
new movies but they did identify an important characteris-
tic of the database, which is one of the goals of this work.
The presence of only a drama object is enough to predict
the nomination in many cases. Last, if a previous award ob-
ject existed in the subgraph, e.g., if the movie was related
to a movie that was also nominated or won an academy
award, it was likely to be nominated itself.

6. Discussion and Conclusions

In this paper, we have presented an approach to identify-
ing predictive structures in relational databases based on
the MIL framework. We adapted this framework for use
with relational data in two related ways: one where the
bags had multiple independent graphs as the instances and
one where the bags had one larger graph and the instances
were the (implicit) subgraphs of this graph. We demon-
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Figure 11. Relational structures identified by the MI learner for
predicting academy award nominees.

stated that these adaptations could be used to modify ex-
isting MI methods and that the relational version of these
methods could be used successfully on both a small and a
large database.

One of the strengths of MIL that is emphasized for flat data
is the ability to identify which features of the task are im-
portant. In the diverse density framework, this is referred
to asscaling. When the concept is a feature vector, di-
verse density can identify a scale for each feature that max-
imizes the diverse density value. If a feature is irrelevant,
its best scale will be zero. This strength also applies to
the techniques that we presented in this paper. Instead of
scaling features in a vector, the concepts identified by the
relational MI learner will only contain a subset of the ob-
jects and links from the bags. This subset represents the
more relevant features with respect to the current task.

Another advantage of MI techniques is that they identify
an actual concept (or set of concepts) that can be under-
stood by a human. kNN can be used to label new data
but it cannot identify aspects of the data that can help a
human to better understand the database. With such struc-
tures, a human can iteratively refine their understanding of
the database and of the tasks at hand.

Relational probability trees (RPT) (Neville et al., 2003) are
a related approach in that they have also been developed to
identify predictive structure in large relational databases.
However, MIL and RPTs express different relational con-
cepts. RPTs are designed to identify structure in a tree form
using attributes on objects or links or structure such as the
number of outgoing links from an object. Although this can
work very well on tasks such as predicting high-grossing
movies, RPTs cannot represent graph concepts such as the
3-clique presented in Section 4.
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Collective classification models exploit the dependencies in a network of
objects to improve predictions. For example, in a network of web pages, the
topic of a page may depend on the topics of hyperlinked pages. A relational
model capable of expressing and reasoning with such dependencies should
achieve superior performance to relational models that ignore such
dependencies. In this paper, we present relational dependency networks
(RDNs), extending recent work in dependency networks to a relational setting.
RDNs are a collective classification model that offers simple parameter
estimation and efficient structure learning. On two real-world data sets, we
compare RDNs to ordinary classification with relational probability trees and
show that collective classification improves performance.

1  Introduction

In this paper, we show how autocorrelation can be used to improve the accuracy of
statistical models of relational data. Autocorrelation is a statistical dependency
between the values of the same variable on related entities and is a common
characteristic of many relational data sets. In previous work, we have shown how
autocorrelation can cause bias in learning algorithms (Jensen & Neville 2002),
particularly when it appears with concentrated linkage, another common
characteristic of relational data sets. However, this work explores methods which
exploit autocorrelation to improve model accuracy. In particular, we demonstrate this
can be accomplished with a relatively simple approach to structure learning in a class
of undirected graphical models that we call relational dependency networks (RDNs).

It is relatively easy to understand how autocorrelation could be used to improve the
predictions of statistical models. For example, consider the problem of automatically
predicting the topic of a technical paper (e.g., neural networks, reinforcement
learning, genetic algorithms). One simple method for predicting paper topics would
look at the position of a paper within a citation graph. It may be possible to predict a
given paper's topic with high accuracy based on the topics of neighboring papers in
this graph. This is possible only because we expect high autocorrelation in the citation
graph—papers tend to cite other papers with the same topic.
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However, such a scheme for prediction assumes that all the labels of related
entities (e.g., topics of referenced papers) are known. In many cases, the topics of an
entire set of papers may need to be inferred simultaneously. This approach, called
collective classification (Taskar, Abbeel & Koller 2002) requires both models and
inference procedures that can use inferences about one entity in a relational data set to
influence inferences about related entities. Similar approaches have been used in
several recent applications (Neville & Jensen 2000; Chakrabarti, Dom & Indyk 1998).

In this paper, we introduce relational dependency networks (RDNs), an undirected
graphical model for relational data. We show how RDNs can be learned and how
RDNs and Gibbs sampling can be used for collective classification. Because they are
undirected graphical models, RDNs can represent the cyclic dependencies required to
express autocorrelation, and they can express a joint probability distribution, rather
than only a single conditional distribution. In addition, they are relatively simple to
learn and easy to understand.

We show preliminary results indicating that collective inference with RDNs offers
improved performance over non-collective inference that we term "individual
inference." We also show that RDNs applied collectively can perform near the
theoretical ceiling achieved if all labels of neighbors are known with perfect accuracy.
These results are very promising, indicating the potential utility of additional
exploration of collective inference with RDNs.

2  Classification Models of Relational Data

Many relational models are used for "individual inference," where inferences about
one instance are not used to change the inference of related instances. For example,
some work in inductive logic programming (ILP) and relational learning uses
relational instances that can be represented as disconnected subgraphs (e.g.,
molecules), thus removing the need (and the opportunity) for collective inference.
Such models can cope with complex relational structure of an instance, but they do
not attempt to model the relational structure among instances.

Even learning relational models for individual inference can be difficult because
learning in relational data differs substantially from learning in propositional settings.
For example, work in ILP has long considered difficult representational issues such as
recursion, aggregation, variables, quantification, and other aspects of first-order and
higher-order logics. In addition, some of our recent work has examined the unique
statistical properties of relational data, and the influence of these characteristics on
learning algorithms. We have shown how concentrated linkage and relational
autocorrelation can bias relational learners toward particular features (Jensen &
Neville 2002). We have also shown how degree disparity can cause misleading
correlations in relational data, leading learning algorithms to add excessive structure
to learned models (Jensen, Neville & Hay 2003).

To address the challenges of relational learning, new learning algorithms are
necessary. For example, probabilistic relational models (PRMs) (Getoor, Friedman,
Koller & Pfeffer 2001) are a form of directed graphical model thatextend Bayesian
networks to support reasoning in complex relational domains. Unfortunately, PRMs
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are a directed model in which autocorrelation cannot be represented due to acyclicity
constraints.1

As another example, we have recently developed relational probability trees
(RPTs), a method for learning tree-structured models that encode conditional
probability distributions for a class label that depend on both the attributes of related
instances and the features of the surrounding structure (Neville, Jensen, Friedland &
Hay 2003). Our methods for learning RPTs adjust for the sources of bias mentioned
above. As a result, the learned RPTs are a relatively compact and parsimonious
representation of conditional probability distributions in relational data. Until
recently, we had only applied these models for individual inference. The algorithm for
learning RPTs adjusts for statistical biases caused by autocorrelation, but our
inference techniques have not made use of autocorrelation to improve inference.

This is unfortunate, because autocorrelation is a nearly ubiquitous phenomenon in
relational data. We have observed relatively high levels of autocorrelation in
relational data sets. For example, in analysis of the 2001 KDD Cup data we found that
the proteins located in the same place in a cell (e.g., mitochondria or cell wall) had
highly autocorrelated functions (e.g., transcription or cell growth). Autocorrelation
has been identified by other investigators as well. For example, fraud in mobile phone
networks has been found to be highly autocorrelated (Cortes, Pregibon & Volinsky
2001). The topics of authoritative web pages are highly autocorrelated when linked
through directory pages that serve as “hubs” (Kleinberg 2001).

We also know that exploiting autocorrelation can result in significant increases in
predictive accuracy. Several recent developments in relational learning have focused
on exploiting autocorrelation. For example, the relational vector-space (RVS) model
(Bernstein, Clearwater & Provost 2003) uses weighted adjacency vectors to construct
classifiers. The model is extremely simple, but it produces accurate classifiers in data
with strong autocorrelation. Other examples include work with web pages
(Chakrabarti et al. 1998) that uses the hyperlink structure to produce smoothed
estimates of class labels and our own prior work (Neville & Jensen 2000) that uses an
iterative classification scheme to improve accuracy by exploiting the inferred class
labels of related instances.

Recently, undirected graphical models capable of representing and reasoning with
autocorrelation have been explored for the task of modeling relational data. Domingos
and Richardson (2001) represent market entities as social networks and develop
Markov random field models to model the influence in purchasing patterns
throughout the network. Taskar et al. (2002) use relational Markov networks (RMNs),
based on conditional random fields for sequence data (Lafferty, McCallum & Pereira
2001), to model the dependencies among web pages to predict page type. Undirected
models have proved to be successful for collective classification of relational data.
However, research into these models has focused primarily on parameter estimation
and inference procedures. Model structure is not learned automatically, it is pre-
specified by the user. Also, the models do not automatically identify which features
are most relevant to the task. For relational tasks, which are likely to have a large

                                                            
1 An exception is where autocorrelation is structured by some additional information such as

temporal constraints. (Getoor et al. 2001)
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number of features, this lack of selectivity will make the model more difficult to
interpret and understand.

3  Relational Dependency Networks

Relational dependency networks extend recent work on dependency networks
(Heckerman, Chickering, Meek, Rounthwaite, and Kadie 2000) to a relational setting.
Dependency networks (DNs) are graphical models of probabilistic relationships—an
alternative to Bayesian networks and Markov random fields. DNs are easy to learn
and have been shown to perform well for a number of propositional tasks so we
expect them to offer similar advantages when used in a relational setting. We begin by
reviewing the details of dependency networks for propositional data and then describe
how to extend dependency networks for use with relational data.

3.1  Dependency Networks

Like Bayesian networks and Markov random fields, dependency networks encode
probabilistic relationships among a set of variables. Dependency networks are an
alternative form of graphical model that approximate the full joint distribution with a
set of conditional distributions that are learned independently. DNs combine
characteristics of both undirected and directed graphical models. The dependencies
among variables are represented with an undirected graph, so conditional
independence can be interpreted using graph separation. However, as with directed
models, dependencies are quantified using conditional probability distributions
(CPDs) of a variable given its parents. The primary distinction between DNs and
other graphical models is that DNs are an approximate model. Because the CPDs are
learned independently, DN models are not guaranteed to specify a coherent
probability distribution (see Learning section below for details).

DNs offer several advantages over conventional Bayesian networks, but also have
several disadvantages (Heckerman et al. 2000). Unlike Bayesian networks, DNs are
difficult to construct using a knowledge-based approach and they cannot represent
causal relationships. However, DN models can encode predictive relationships (i.e.
dependence and independence) and there are simple techniques for parameter
estimation and structure learning of DNs.

The characteristics that distinguish DN models from Bayesian networks make them
similar to Markov random fields. Both DNs and Markov random fields use undirected
graphs to represent dependencies among variables. When the causal relationships
among variables are unknown, undirected models are often more interpretable than
directed models which require d-separation reasoning to assess conditional
independencies. Undirected graphical models also have straightforward techniques for
parameter estimation and structure learning (e.g. Della Pietra, Della Pietra and
Lafferty 1997). DN conditional probability distributions will generally be easier to
inspect and understand than Markov network clique potentials, but DNs approximate
the full joint distribution and therefore Markov networks may produce more accurate
probabilities.
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Representation.  The DN model consists of a set of conditional probability
distributions (CPDs), one for each variable given its parents. Consider the set of
variables X=(X1,...,Xn)  with a joint distribution p(x)=p(x1,...,xn). A dependency
network for X is represented by a graph G where each node in G corresponds to an
XiŒX. The parents of node Xi, denoted pai, consist of the nodes in its Markov blanket:
This specifies that, given its parents, a node is conditionally independent of the rest of
the nodes in the graph:

† 

p(xi | pai) = p(xi | x \ xi)
The undirected edges of the graph connect each node xi to each of its parents (the
nodes in pai). Furthermore, each node in the graph contains a local CPD, pi=p(xi|pai).
Together these CPDs specify the joint distribution over X.

For example, the DN in figure 1 could be used to model the set of variables
X=(X1,X2,X3,X4,X5).  Each node is conditionally independent of the other nodes in the
graph given its parents. For example, X1 is conditionally independent of X2 and X4
given X3 and X5.  Each node contains a CPD, which specifies a probability distribution
over possible values given the values of its parents. The full joint probability is the
product of the local CPDs:

† 

p(X) = p(X1 | X3,X5)p(X2 | X3,X4 )p(X3 | X1,X2)p(X4 | X2,X3)p(X5 | X1)
Notice that the model may have cycles. For example, X2, X3 and X4 form a clique in
the graph. This necessitates the use of approximate inference techniques (see
Inference section below for details). Also, notice that X4 is dependent on X3, but the
reverse is not true. An undirected edge is placed between two nodes if either of the
nodes is dependent on the other. In this case, a node’s parents will still form a Markov
blanket, but they won’t be the minimal set (e.g. p3=p(x3|x1,x2,x4)= p(x3|x1 ,x2)).

Fig. 1. Sample dependency network.

Learning.  As with any graphical model, there are two components to learning a DN:
structure learning and parameter estimation. Both structure learning and parameter
estimation is accomplished through learning the local CPDs of each variable. The
structure of a DN model is defined by the components of the local CPDs, much as
feature specifications define the structure of a undirected graphical model. The edges
of the graph connect a node to each of the variables in its local CPD. The parameters
of the model correspond to the parameters of the local CPDs.
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The DN learning algorithm learns a separate CPD for each variable, conditioned on
the other variables in the data. For the DN model to be less than fully connected, a
selective learning algorithm should be used. Any selective modeling technique can be
used, however, to build a parsimonious DN model it is desirable to use a selective
learner that will learn small, accurate CPDs.

For example, an algorithm for learning relational probability trees could be used to
model X1 given X 2,X3,X4,X5. The variables included in the tree would then be
designated as X1’s parents in the network, the appropriate edges would be added to the
graph (e.g. X1 to X3 and X1 to X5) and the tree itself would be used as the local CPD for
X1. Learning the full DN in figure 1 would require learning five models, one tree for
each variable in the graph.

Although the DN approach to structure learning is simple, it can result in an
inconsistent network, both structurally and numerically—there may be no joint
distribution from which each of the CPDs can be obtained using the rules of
probability. Learning each local CPD independently may result in an inconsistent
network where there is an edge between two variables but one is not dependent on the
other (e.g. X 4 is dependent on X 3 but not vice versa). Independent parameter
estimation may also result in inconsistencies where the overall joint distribution does
not sum to 1.  However, Heckerman et al. (2000) show that DNs will be “nearly”
consistent if learned from large data sets.  That is, the data serve a coordinating
function that ensures some degree of consistency among the CPDs.

Inference.  Unlike Bayesian networks, the dependency network graphs are potentially
cyclic. This is due to the nature of the structure-learning algorithm where there is no
restriction on the form of the CPDs. Cyclic dependencies necessitate the use of
approximate inference techniques such as Gibbs sampling (e.g. Neal 1993) or loopy
belief propagation (e.g. Murphy, Weiss and Jordan 1999). Heckerman et al. use Gibbs
sampling to combine the models to approximate the full joint distribution and extract
probabilities of interest. In practice, DNs have produced good approximations to the
joint distributions represented by directed graphical models (Heckerman et al. 2000).

3.2  Relational Dependency Networks

Relational dependency networks (RDNs) extend DNs to work with relational data.
The extension is similar to the way in which probabilistic relational models (Getoor et
al. 2001) extend Bayesian networks for relational data.

Representation.  RDNs specify a probability model over a network of instances.
Given a set of objects and the links between them, a RDN defines a full joint
probability distribution over the attribute values of the objects. Attributes of an object
can depend probabilistically on other attributes of the object, as well as on attributes
of objects in its relational neighborhood.

Instead of defining the dependency structure over attributes, as in DNs, RDNs
define a generic dependency structure at the level of object types. Each attribute Ai
associated with object type X is linked to a set of parents that influence the value of
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Ai. Parents of Ai are either (1) other attributes associated with type X, or (2) attributes
associated with objects of type Y where objects Y are linked to objects X. For the latter
type of dependency, if the relation between X and Y is one-to-many, the “parent”
consists of a set of attribute values. In this situation, RDNs uses aggregated features to
map sets of values into single values.

For example, Figure 2 contains an example dataset from the movie domain. There
are three types of objects—movies, studios and actors. Each object type has a number
of associated attributes that will be each be modeled in the RDN. Consider the
attribute actor.hasAward—the set of potential parents for this attribute consists of
actor.gender, movie.receipts and studio.country. Notice that an actor can star in
multiple movies and thus be associated indirectly with multiple studios.

Fig. 2. Sample relational data graph.

The full RDN model is potentially much larger than the original data graph. To
model the full joint distribution there must be a separate node (and CPD) for each
attribute value in the data graph. Consequently, the total number of nodes in the
model graph will be ÂT NTAT where NT is the number of objects of type T in the data
graph and AT is the number of attributes for objects of that type. To make the models
tractable, the structure and parameters of the CPDs are tied—the RDN model contains
a single CPD template for each attribute of each type of object.  For the example
above, the model would consist of four CPDs, one for actor.gender, actor.hasAward,
movie.receipts and studio.country.

To construct the model graph, the set of template CPDs is rolled-out over the entire
data graph. Each object-attribute pair gets a separate, local copy of the appropriate
CPD. This facilitates generalization across data graphs of varying size. We can learn
the CPD templates from one data graph and apply the model to a second data graph
with a different number of objects by rolling-out more CPD copies. This approach is
analogous to other graphical models that tie distributions across the network (e.g.
hidden Markov models, PRMs).

Figure 3 contains a possible RDN model graph for the example discussed above. It
shows dependencies between actor .gender  and actor.hasAward, between
actor.hasAward and movie.receipts, and between movie.receipts and studio.country.
Furthermore, there is a dependency between movie.receipts of related movies. Notice
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the hyper-edges between movies and associated actor awards. This indicates that
movie receipts is dependent on an aggregated feature of actor.hasAward (e.g.
EXISTS(actor.hasAward=Y)). Aggregation is one approach to ensure the template
CPDs are applicable across data graphs of varying structure. Each movie may have a
different number of actor award values, so aggregation is used to map these sets of
values into single values.

Learning.  Learning an RDN model again consists of two tasks: learning the
dependency structure, and estimating the parameters of the conditional probability
distributions. The RDN learning algorithm is much like the DN learning algorithm,
except we use a selective relational classification algorithm to learn a set of
conditional models. We use relational probability trees (RPTs) for the CPD
components of the RDN. RPTs extend standard probability estimation trees to a
relational setting in which data instances are heterogeneous and interdependent
(Neville et al. 2003). RPT models estimate probability distributions over possible
class label values in the same manner as conventional classification trees, but the
algorithm looks beyond the attributes of the item for which the class label is defined
and considers the effect of the local relational neighborhood on the probability
distribution. RPT models represent a series of questions to ask about an item and the
objects/links in its relational neighborhood.

Fig. 3. Sample RDN model graph.

The RPT learning algorithm (Neville et al. 2003) uses a novel form of
randomization tests to adjust for biases towards particular features due to the
characteristics of the relational data (e.g. degree disparity, autocorrelation). We have
shown that RPTs learned with randomization tests, build significantly smaller trees
than other models and achieve equivalent, or better, performance. This characteristic
of the RPTs is crucial for learning parsimonious RDN models—the collection of RPT
models will be used during Gibbs sampling so the size of the models will have a
direct impact on inference efficiency.

Given a data graph, an object type and a target attribute—an RPT is learned to
predict the attribute given (1) the other attributes of the object, and (2) the attributes
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of other objects and links in the relational neighborhood. In our current approach, the
user specifies the size of relational neighborhood to be considered by the RPT
algorithm in (2). For efficiency reasons, we’ve limited the algorithm to consider
attributes of objects one or two links away in the data graph. However, it is possible
for the RPT models to consider attributes of much more "distant" objects (in the sense
of a graph neighborhood).

Figure 4 shows an example RPT learned on data from the IMDb to predict whether
a movie’s opening-weekend receipts are more than $2million, given the attributes of
movies and everything up to two links away—actors, directors, producers and studios,
as well as movies associated with those objects (see Section 4 for experimental
details). The tree indicates that movie receipts depend on the receipts of other movies
made by the same studio, as well as actor age and movie genre. The root node of this
tree asks whether more than 60% of the other movies made by the studio (e.g. Studio
Movie objects) have receipts=Y. If this is not the case, the model moves to the next
node on the right branch and asks whether the movie has more than 5 actors born after
1958. If the answer to this question is also no, a prediction of P(Y)=0.01 is returned.

Fig. 4. Example RPT learned for the IMDb dataset to predict movie receipts given the labels of
related movies.

Inference.   As in the case of DNs, we use Gibbs sampling for inference in RDN
models. For classification tasks, we want to estimate the full joint distribution over the
target attributes in the graph. During inference, the model graph consists of a rolled-
out network with both observed and unobserved variables. For example, we may want
to use the network in Figure 3 to predict movie.receipts given studio.country,
actor.gender and actor.hasAward. In this case, all attribute values are observed except
movie.receipts. The values of the target variable are initialized to values drawn from
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the prior distribution (e.g. default distribution of movie.receipts in the training set).
Gibbs sampling then proceeds iteratively, estimating the full joint distribution in
cycles. For each target variable, the RPT model is used to return a probability
distribution given the current attribute values in the rest of the graph. A new value is
drawn from the distribution, assigned to the variable and recorded. This process is
repeated for each unobserved variable in the graph. After a sufficient number of
iterations, the values will be drawn from a stationary distribution and we can use the
samples to estimate the full joint distribution. There are many implementation issues
that could improve the estimates obtained from a Gibbs sampling chain, such as
length of “burn in” and number of samples. We have not yet investigated the effects
of these decisions on RDN performance. For the experiments reported in this paper
we do not use a burn-in period and we use a fixed length chain of 2000 samples.

4  Experiments

This paper focuses on evaluation of RDNs in a classification context, where only a
single attribute is unobserved in the test set—others are assumed to be observed and
are not modeled with CPDs.

The experiments reported below are intended to evaluate two assertions. The first
claim is that dependencies among instances can be used to improve model accuracy.
We evaluate this claim by comparing the performance of two models. The first model
is a conventional RPT model—an individual classification model that does not use
labels of related instances, reasoning about each instance independently from other
instances. We call this model RPT-indiv. The second model is a collective
classification RDN model that exploits additional information available in labels of
related instances and reasons about networks of instances collectively.

The second claim is that the RDN models, using Gibbs sampling, can effectively
infer labels for a network of instances. To evaluate this claim, we include two more
models for comparison. The third model is a conventional RPT model in which we
allow the true labels of related instances to be used during both learning and
inference. We call this model RPT-ceiling. This model is included as a ceiling
comparison for the RDN model. It shows the level of performance possible if the
model knew the true labels of related instances. The fourth model is intended to
assess the need for a collective inference procedure. We call this model RPT-default.
It reports the performance achieved on the first round of Gibbs sampling. This is
equivalent to learning a conventional RPT model with the true labels of related
instances, then randomly assigning labels according to the prior distribution of labels
to use for inference. Since the test sets have connections to labeled instances in the
training set (see next section for details), it is possible that these labels could provide
enough information for accurate inferences, making Gibbs sampling unnecessary.

4.1  Tasks

The first data set is drawn from the Internet Movie Database (IMDb)
(www.imdb.com). We gathered a sample of all movies released in the United States
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from 1996 through 2000, with opening weekend receipt information. The resulting
collection contains 1383 movies.  In addition to movies, the data set contains
associated actors, directors, producers, and studios.  In total, the data set contains
46,000 objects and 68,000 links.  The learning task was to predict movie opening-
weekend box office receipts. We discretized the attribute so that a positive label
indicates a movie that garnered more than $2 million in opening-weekend box office
receipts (receipts) (P(Y)=0.45).

We created training set/test set splits by temporal sampling into five sets, one for
each year. Links to the future were removed from each sample. For example, the
sample for 1997 contains links to movies from 1996, but not vice versa. We trained
on the movies from one year (e.g. 1996) and tested on movies from the following year
(e.g. 1997). Notice that during inference, there are links from the test set to fully
labeled instances in the training set. This approach to sampling is intended to
reproduce the expected domain of application for these models.

The RPT learning algorithm was applied to subgraphs centered on movies. The
subgraphs consisted of movies and everything up to two links away—actors,
directors, producers and studios, as well as movies associated with those objects. Nine
attributes were supplied to the models, including studio country, actor birth-year and
the class label of related movies two links away. Figure 4 shows an example RPT
learned with the class labels of related movies. For a given movie x, the objects
tagged “Studio Movie” refer to the other movies made by the primary studio
associated with x.

The second data set is drawn from Cora, a database of computer science research
papers extracted automatically from the web using machine learning techniques
(McCallum, Nigam, Rennie and Seymore 1999). We selected the set of 1478
machine-learning papers published from 1994 through 1998, along with associated
authors, journals, books, publishers, institutions and references. The resulting
collection contains 11,500 objects and 26,000 links.  The prediction task was to
identify paper topic. Machine learning papers are divided into seven topics
{Reinforcement Learning, Case-Based Reasoning, Probabilistic Methods, Theory,
Genetic Algorithms, Neural Networks, and Rule Learning}.

As with the IMDb, we created training set/test set splits by temporal sampling into
five sets, one for each year. The RPT learning algorithm used subgraphs centered on
papers. The subgraphs consisted of papers, authors, journals, books, publishers,
institutions and references, as well as papers associated with the authors. Twelve
attributes were available to the models, including the journal affiliation, paper venue,
and the topic of papers one link away (references) and two links away (through
authors). Figure 5 shows an example RPT learned with the topics of related papers.

The RPT learning algorithm used randomization tests for feature selection and a
Bonferroni-adjusted p-value growth cutoff of a=0.05. The RDN algorithm used a
fixed number of Gibbs sampling iterations (2000).

4.2  Results and Discussion

Table 1 shows accuracy results for each of the four models on the IMDb classification
tasks. On the IMDb, the RDNs models perform comparably to the RPT-ceiling
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models. This indicates that the RDN model realized its full potential, reaching the
same level of performance as if it had access to the true labels of related movies.

In addition, the performance of the RDN models is superior to both the RPT-indiv
models (RPT learned without labels) and the RPT-default models (RPT learned with
labels and tested with a default labeling for the class values of related instances). In
the example RPT in Figure 4 we can see that two of the five features refer to the
target label on related movies. This indicates that autocorrelation is both present in the
data and identified by the RPT models. The performance improvement over RPT-
indiv is due to successful exploitation of this autocorrelation.

Fig. 5. Example RPT learned for the Cora dataset to predict paper topic given the topics of
related papers.

We used two-tailed, paired t-tests to assess the significance of the accuracy results
obtained from the four trials. The t-tests compare the RDN results to each of the three
other models. The null hypothesis is that there is no difference in the accuracies of the
two models; the alternative is that there is a difference. The resulting p-values are
reported in the bottom row of the table, in the column of the model being compared to
the RDN. The results support our conclusions above that the RDN results are
significantly better than both RPT-indiv and RPT-default. Although the average
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performance of the RDNs is slightly lower than the RPT-ceiling models, the t-test
indicates that this difference is not significant.

Table 1: Accuracy results for IMDb task
RPT-indiv RPT-ceiling RPT-default RDN

1 0.7148 0.8303 0.7473 0.8628
2 0.7500 0.8052 0.7370 0.8084
3 0.6893 0.8357 0.7429 0.7857
4 0.7103 0.8318 0.7383 0.8224

Avg 0.7161 0.8258 0.7414 0.8198
t-Test 0.0113 0.7529 0.0137

On the Cora classification task, shown in Table 2, the RDN models show
significant gains over the RPT-indiv and RPT-default models. This indicates that most
of the predictive information lies in the topics of related pages. Nearly 90% of the
features selected for the trees involved the topic of referenced papers. (Recall that
reference topic was one of twelve attributes available to the model to form features.)

In this experiment, RDN models did not achieve the level of performance possible
if the true label of related papers were known. However, the improvement from RPT-
indiv and RPT-default models is notable. This is due to the paucity of predictive
attributes other than the target label, clearly showing how autocorrelation can be
exploited to improve model accuracy.

Table 2: Accuracy results for Cora task
RPT-indiv RPT-ceiling RPT-default RDN

1 0.2813 0.7437 0.4429 0.6852
2 0.2456 0.7646 0.4429 0.7013
3 0.2619 0.8027 0.5374 0.7313
4 0.2689 0.8571 0.5630 0.7983

Avg 0.2644 0.7920 0.4966 0.7290
t-Test 0.0004 0.0002 0.0004

The difference in accuracy between the RDN and RPT-ceiling models may indicate
that Gibbs sampling had not converged within the 2000 trials. To investigate this
possibility we tracked accuracy throughout the Gibbs sampling procedure. Figure 6
shows curves for each of the tasks based on number of Gibbs iterations. The four lines
represent each of the trials. Although we used 2000 iterations, we limit the graph
because the accuracy plateaus within the first 150 iterations. Accuracy improves very
quickly, leveling within the first 50 iterations. This shows that the approximate
inference techniques employed by the RDN may be quite efficient to use in practice.
We are currently experimenting with longer Gibbs chains, random restarts and
convergence metrics to fully assess this aspect of the model.
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Fig. 6. Accuracy vs. number of Gibbs iterations. Each curve represents a separate trial.

If we can conclude from the learning curves that the Gibbs chain had converged,
why didn’t the RDN model perform as well as the RPT-ceiling model on Cora? One
possible explanation is the lack of predictive attributes other than topic. The Gibbs
chain may mix slowly, making the procedure unlikely to jump to distant portion of the
labeling space. The inference procedure will suffer when there are no predictive
attributes known with certainty to drive the mixing process in the right direction.

5  Conclusions and Future Work

These results indicate that collective classification with RDNs can offer significant
improvement over non-collective approaches to classification when autocorrelation is
present in the data. The performance of RDNs can approach the performance that
would be possible if all the class labels of related instances were known. In addition,
RDNs offer a relatively simple method for learning the structure and parameters of a
graphical model, and they allow us to exploit existing techniques for learning
conditional probability distributions. Here we have chosen to exploit our prior work
on RPTs, which construct particularly parsimonious models of relational data, but we
expect that the general properties of RDNs would be retained if other approaches to
learning conditional probability distributions were used, given that those approaches
are both selective and accurate.
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Abstract

In this paper we present the Relational Bayesian
Classifier (RBC), a modification of the Simple Bayesian
Classifier (SBC) for relational data. There exist several
Bayesian classifiers that learn predictive models of
relational data, but each uses a different estimation
technique for modeling heterogeneous sets of attribute
values. The effects of data characteristics on estimation
have not been explored. We consider four simple
estimation techniques and evaluate them on three real-
world data sets. The estimator that assumes each multiset
value is independently drawn from the same distribution
(INDEPVAL) achieves the best empirical results. We
examine bias and variance tradeoffs over a range of data
sets and show that INDEPVAL’s ability to model more
multiset information results in lower bias estimates and
contributes to its superior performance.

1. Introduction

This paper presents a modification of the Simple
Bayesian Classifier (SBC) for relational data. The power
of relational data lies in combining intrinsic information
about objects in isolation with information about related
objects and the connections between those objects.
However, the data often have irregular structures and
complex dependencies, which contradict the assumptions
of conventional modeling techniques. In particular, the
heterogeneous structure of relational data precludes direct
application of a SBC model, which operates on attribute-
value data. We consider several approaches to modeling
data with a relational Bayesian classifier (RBC) and
evaluate performance on three data sets. The approach
that follows the spirit of SBC and assumes conditional
attribute value independence appears to work best. (See
[9] for an expanded version of this paper.)

The simplicity of the SBC stems from its assumption
that attributes are independent given the class—an
assumption rarely met in practice. Research investigating
the effects of this assumption on performance has helped
to better understand the range of applicability of the SBC.
For example, Domingos and Pazzani [2] showed that the
SBC performs well under zero-one loss even when the

independence assumption is violated by a wide margin.
This paper studies similar questions for relational data.
We empirically evaluate four different techniques on
several real-world data sets.  We explore the techniques
on simulated data sets, decomposing loss into bias and
variance estimates [1].  Our experiments show that
characteristics of relational data can bias certain
estimators and that using estimators with decreased bias
improves model performance.

2. Modeling Relational Data

Relational data violate two assumptions of
conventional classification techniques. First, algorithms
for propositional data assume that the data instances are
recorded in homogeneous structures (e.g. a fixed set of
fields for each object), but relational data “instances” are
consist of sets of heterogeneous records. Second,
algorithms for propositional data assume that the data
instances are independent and identically distributed
(i.i.d.), but relational data have dependencies both through
direct relations and through chaining multiple relations
together. In this paper, we evaluate simple algorithms for
learning models of data sets with heterogeneous instances.
We do not attempt to exploit dependencies among related
instances.

Relational data often have complex structures that are
more difficult to model than homogeneous instances. For
example, in order to predict the box-office success of a
movie, a relational model might consider not only the
attributes of the movie, but also attributes of the movie’s
actors, director, producers, and the studio that made the
movie. A model might even consider attributes of
indirectly related objects such as other movies made by
the director. Each movie may have a different number of
related objects, resulting in diverse structures. For
example, some movies may have 10 actors and others
may have 1000. When trying to predict the value of an
attribute based on the attributes of related objects, a
relational classification technique must consider multisets
of attribute values. For example, we might model the
likelihood of movie success given the multiset of gender
values from the movie’s actors.

There are a number of approaches to modeling sets of
attribute values. Propositionalization is a common
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technique to transform heterogeneous data instances into
homogenous records, mapping sets of values into single
values with aggregation functions. A second approach is
to treat the set of values independently and aggregate the
resulting probability distributions using combining rules
such as noisy-or or average [4]. A third approach is to
model the sets directly with multinomials [7] or complex
set-valued estimators [6].

This paper considers four estimation techniques from
the range of approaches outlined above. Recent work has
demonstrated the feasibility of these approaches for
statistical models of relational data, but the choice of
technique for any one model has been approached in a
relatively ad-hoc manner. A thorough understanding of
the effects of relational data characteristics on estimator
performance will improve parameter estimation for
relational data and should inform the development of
more complex statistical models.

Figure 1. Relational data represented as (a) a subgraph, and
(b) decomposed by attribute.

3. Relational Bayesian Classifiers

The RBC represents heterogeneous examples as
homogenous sets of attribute multisets. For example, a
movie subgraph contains information about a number of
related objects, such as actors and studios (e.g. Figure 1a).
Transformed examples contain a multiset of values for
each attribute, such as actor-age and studio-location (e.g.
Figure 1b). This enables a SBC approach, where learning
a model consists of estimating conditional probabilities
for each attribute. However, estimation techniques for
these data will need to model multisets of varying
cardinality and high dimensionality. We refer to
techniques used to estimate these probabilities as
estimators . We will evaluate three approaches to
estimation and four approaches to inference.

Average Value—The average value estimator
(AVGVAL) corresponds to propositionalizing the data by
averaging. During estimation, each multiset is replaced
with its average value (for continuous attributes) or modal
value (for discrete attributes). The average values are used
in a standard maximum-likelihood estimator and
probabilities are inferred from average/modal values as
well. AV G V A L  estimators are commonly used in
probabilistic relational models (PRMs) to model
dependencies where the “parent” consists of a set of
attribute values [3].  We hypothesize that AVGVAL should
perform well if the multiset values are highly correlated,
so the multiset is no more informative than the average.

Random Value—The random value estimator
(RANDVAL) is similar to AVGVAL. However, instead of
deterministically choosing the most prevalent value from
the set, RANDVAL chooses a representative value
stochastically. This allows the estimation to differentiate
between relatively uniform sets of values and highly
skewed sets. This approach is equivalent to the stochastic-
mode aggregation used in PRMs for classification [10].
Although RANDVA L  may be more sensitive to the
distribution of values in the sets, it may also experience
greater variance if multiset values are distributed
uniformly over a large range.

Independent Value—The independent value estimator
(INDEPVAL) assumes each multiset value is independently
drawn from the same distribution. This estimator is
designed to mirror the independence assumption of
SBC—now in addition to attribute independence, there is
also an assumption of attribute value independence given
the class. INDEPVA L  models the multiset with a
multinomial distribution where the size of the set is
independent of the class. INDEPVAL should perform well
if the multiset can be used to reduce variance, when there
is little correlation among attribute values.

Average Probability—The fourth estimator
(AVGPROB) aggregates probability distributions. It is an
inference technique only (IN D E P V A L  is used for
estimation). During inference, each multiset value’s
probability is computed independently and then the set of
probabilities is averaged. This approach is one of the
combining rules used in Bayesian logic programs (BLPs)
to integrate probabilities into logic programs [4].
AVGPR O B  computes an arithmetic average of
probabilities. If the set values are dependent, geometric
averaging (used in INDEPVAL) will push the probabilities
to extreme values. However, geometric averaging is more
robust to irrelevant values, which pull arithmetic averages
toward the center and wash out the effects of the useful
values.

4. Empirical Data Experiments

The experiments reported below evaluate the claim
that RBC models using INDEPV AL estimators will
outperform RBC models using AVGVAL, RANDVAL or
AVGPROB estimators. We compare the performance of
each estimator on three real-world classification tasks. To
compare the approaches, we recorded accuracy and area
under the ROC curve using ten-fold cross-validation.

4.1. Classification Tasks

The first data set, drawn from the Internet Movie
Database (IMDb) (www.imdb.com), is a sample of all
movies released in the United States from 1996 to 2001,
with opening weekend box-office receipt data. The
sample contains 1383 movies and related actors, directors,
producers, and studios.  The task was to predict whether a
movie made more than $2mil in opening weekend
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receipts (P(+)=0.45). Nine attributes were supplied to the
models, including studio country and actor birth-year.

The second data set, drawn from Cora [8], is a sample
of 4330 machine-learning papers and associated authors,
journals/books, publishers, and cited papers. The task was
to predict whether a paper’s topic is Neural Networks
(P(+)=0.32).  Ten attributes were available to the models,
including journal affiliation and paper venue.

The third data set contains information about 1243
genes in the yeast genome and 1734 interactions among
their associated proteins (www.cs.wisc.edu/~dpage/
kddcup2001/). The task was to predict whether a gene’s
functions include Transcription (P(+)=0.31).  Fourteen
attributes where supplied to the models, including gene
phenotype, motif, and interaction type.

4.2. Results

Figure 2 shows AUC results for each of the models on
the three classification tasks, averaged over the ten folds.
Accuracy results are comparable [9]. We used two-tailed,
paired t-tests to assess the significance of the ten-fold
cross-validation results, comparing INDEPVAL to each of
the other estimators. Asterisks in Figure 2 indicate a
significant difference in performance compared to
INDEPVAL (p-value < 0.001).

On the IMDb and Cora classification tasks,
INDEPVAL’s AUC results are superior to any of the other
approaches. The performance of AVGVAL and RANDVAL
indicates that propositionalizing relational data (even
stochastically) to apply conventional models may not
always be a good approach. On the Gene task, all
approaches perform equivalently.

Figure 2: Results of empirical data experiments for IMDb,
Cora, and Gene databases.

5. Synthetic Data Experiments

We use synthetic data to explore the effects of linkage,
attribute correlation, and multiset distributions on
estimator performance. Relational data sets often exhibit
concentrated linkage, where certain object types have a
large number of relations. For example, papers in Cora
link to a few journals, and movies in the IMDb link to a
small number of studios. Uniformity among attribute
values of objects that share a common neighbor is also
common in relational data. For example, in the gene data,

proteins located in the same place in the cell often have
highly correlated functions.

5.1. Methodology

Our synthetic data sets are comprised of bipartite
graphs, each containing a single core object (e.g. a movie)
linked to zero or more peripheral objects (e.g.
actors). Note that each actor links to exactly one
movie. Each movie has a binary class label, C={+,-}, and
each actor has a binary attribute, A={1,0}. The number of
actors per movie is distributed normally with mean equal
to |actors|/|movies|. The default experimental parameters
were 100 movies, 500 actors, P(C=+)=0.5, and
P(A=1|C=+)=P(A=0|C=-)=0.75. Variations from these
defaults are described for each experiment below.

We measured average zero-one loss and squared-loss
for each RBC estimator across 100 pairs of training/test
sets and decomposed loss into bias and variance [1]. Bias
and variance estimates were calculated for each test
example using 100 different training sets and averaged
over the entire test set. This was repeated for 100 test sets
and averaged. The zero-one loss results are presented in
Figure 3. Squared-loss results are similar [9].

Figure 3: Results of synthetic data experiments.

5.2. Results

The experiment shown in Figure 3a varied the total
number of actors in each data set from 100 to 1000.  In
this experiment A V GV AL and INDEPVAL are nearly
indistinguishable, as are AVGPROB and R ANDVAL. For all
estimators except RANDVAL, increasing degree reduces
variance. This was expected, as the variance of the
random value selection increases with set size.
AVGPROB’s arithmetic averaging cannot exploit the extra
information in larger sets, which results in higher bias.
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The experiment in Figure 3b varied the correlation
among linked actor attribute values from [0.05,0.85]. 
Again, AVGVAL and INDEPVAL are indistinguishable. As
attribute correlation increases, the bias of the INDEPVAL
estimator increases, indicating that INDEPVAL’s
probability estimates may be skewed in data with high
attribute correlations.

The experiment in Figure 3c varied P(A=1|C=+) from
[0,1] while holding P(A=1|C=-) constant at 0.  This is the
first experiment to show a difference between AVGVAL
and INDEPVAL, illustrating performance when rare
attribute values determine the class. Since INDEPVA L
shows lower bias than either of the other estimators we
can attribute its higher accuracy to this reduction in bias.

Given these results, the relative strength of INDEPVAL
appears to lie in the estimator’s ability to make use of rare
attribute values, as well as multiple predictive values
within a multiset. To determine if these types of multisets
occur in practice, we examined multisets from the IMDb.
We calculated the correlation of each attribute value with
the class label using chi-square, assessed significance
after adjusting for multiset size [5], and then determined
the number of unique correlated attribute values per
movie. Figure 4 shows the frequency distribution of these
counts across movies for three example attributes. A large
number of movie subgraphs have more than one unique
attribute value correlated with the class. In this situation,
estimators that can capture more multiset information
(e.g. IN D E PV A L) will outperform estimators that
propositionalize to a single value (e.g. AVGVAL).

Figure 4: Count of unique significantly correlated values in
each subgraph, for three attributes in the IMDb.

6. Conclusions

We have identified a simple approach to estimation for
relational data. Adhering to the spirit of SBC simplicity,
the RBC model that assumes conditional independence of
both attributes and multiset attribute values (INDEPVAL) is
successful in a variety of real-world classification tasks.
This model is easy to implement and efficient to use,
making it a good baseline for evaluation of more complex
relational learning techniques.

INDEPVAL estimators have low bias and variance over
a wide range of synthetic data sets. AVGVAL has low
variance over a number of conditions, but it is easy to
identify situations in which A V G V A L  is a biased
estimator. We can infer that INDEPV AL’s superior

performance on the real-world classification tasks is a
result of lower overall bias—due to its ability to exploit
information contained in both rare values and multiple
correlated values within the sets. AVGPROB appears to be
biased over a number of data sets, but it performs quite
well on the IMDb. This reveals that our synthetic data
experiments have not clearly identified the circumstances
in which AVGPROB is a good approach to estimation.

Future work will include further analysis of the effects
of relational data characteristics on complex multiset
estimators [e.g. 6] and development of models that select
attribute estimators based on data characteristics.
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Statistical relational learning (SRL) research has
made significant progress over the last 5 years.
We have successfully demonstrated the feasibil-
ity of a number of probabilistic models for rela-
tional data, including probabilistic relational
models, Bayesian logic programs, and relational
probability trees, and the interest in SRL is
growing. However, in order to sustain and nur-
ture the growth of SRL as a subfield we need to
refocus our efforts on the science of machine
learning — moving from demonstrations to
comparative and ablation studies. We will out-
line four assertions that are implicit to SRL re-
search but which have been only minimally
evaluated. We hope to stimulate discussion as to
how, as a community, these claims can be ad-
dressed in future research.

1 Introduction
In the hopes of generalizing the results of recent research
from the statistical relational learning (SRL) community,
we surveyed twenty recent SRL papers. From the papers
studied we were able to distill four implicit claims that
underlie much of the current SRL research.  We present
an examination of those claims in the context of the pa-
pers surveyed.

We chose twelve of the papers as a representative
sample for the purposes of this discussion.  Each paper
chosen describes and evaluates a discriminative, prob-
abilistic relational model.  A descriptive list of the se-
lected models and papers appears in Table 1.

The purpose of this paper is to stimulate a discussion
of the scientific methods that will help to illustrate and
evaluate the relative merits of the different models and
their frameworks.

2 Relational vs.  propositional
Claim: Models learned from both intrinsic and relational
information perform better than those learned from in-
trinsic information alone, and are therefore worth the
added complexity.

This is an implicit claim of relational learning in gen-
eral. We expect that predictive information exists in rela-
tionships among instances, and that this information can
be used to reduce model bias. However, decreasing bias
often results in increased variance (Friedman 1997). This
is a very real concern for relational learning algorithms
that are faced with an exponential explosion in the size of
the model space.

The simplest way to evaluate this claim is to record
model performance using intrinsic data, a subset of the
data where relational information is removed. By this we
mean data where the instances are objects in isolation,
and the only information available are the attributes in-
trinsic to those objects as individuals. Popescul, Ungar,
Lawrence, and Pennock (2003) use this approach when
evaluating their models on citation data, comparing mod-
els learned on information intrinsic to documents alone
with those learned from both intrinsic and citation infor-
mation. Getoor, Segal, Taskar and Koller (2001) use an
alternative approach, including results from a baseline
propositional model learned on intrinsic data. This tech-
nique is also employed in four other papers. See figure 2
for details.

More than half of the papers surveyed included some
comparative intrinsic analysis, and the results vary con-
siderably across models and datasets. For example, when
using relational features Neville, Jensen, Gallagher, and
Fairgrieve (2003) found marked improvement in model
performance on two datasets, but no significant gain on a
third. We believe that this type of analysis is important
baseline for determining whether the inclusion of rela-
tional information is of any benefit, and if so whether the
additional model complexity is warranted. Although pre-
liminary analysis along these lines is a common compo-
nent of SRL research, we feel that more explicit and di-
rected experimentation is needed to fully justify the use
SRL models for relational datasets.

3 Probabilistic vs.  deterministic
Claim: Probabilistic relational models offer significant
advantages over deterministic relational models in rela-
tional domains.

Statistical Relational Learning: Four Claims and a Survey

Jennifer Neville, Matthew Rattigan, David Jensen
Knowledge Discovery Laboratory, Department of Computer Science, University of Massachusetts,

140 Governors Drive, Amherst, MA 01003 USA 
{jneville | rattigan | jensen } @cs.umass.edu

122



Research in relational learning has investigated deter-
ministic models for many years (e.g. Muggleton & De
Raedt 1994, Lavrac & Dzeroski 1994). Recent efforts
have shifted the focus towards a probabilistic setting. We
outline a number of advantages of probabilistic models
below, but we feel that discussion of the strengths and
weaknesses of each technique is worth exploring in
greater detail. Discussion along these lines is necessary
to come to a general understanding of the range and ap-
plicability of SRL models.

Figure 1: SRL models and evaluation datasets.

One strength of probabilistic models is the ability to
evaluate how these models will perform over a range of
class and cost distributions (Provost and Fawcett, 1997).
Classification tasks involving complex relational data
often have varying levels of misclassification costs as
well as uncertain class distributions. Since deterministic
models do not associate a level of confidence with their
classifications, it is difficult to estimate their behavior in
these domains.

Another advantage of probabilistic models is their
suitability to real-world analysis tasks. Since these mod-
els generate meaningful, continuous probability scores,
they lend themselves to an iterative, hierarchical ap-
proach to analysis. As Bernstein, Clearwater, and Provost
(2003) point out, “scores may be most useful as feature
constructors in other, more complicated systems.” It is
therefore crucial to evaluate the probabilities produced in
SRL models quantitatively; unfortunately, none of the
papers we surveyed perform this type of evaluation. Sec-
ondly, probability scores allow us to rank instances in
order of certainty. This is of great use to real-world ana-
lysts who have limited time to investigate “positive” in-
stances, as confidence scores allow an analyst to priori-
tize instances rather than treat all members of a predicted
class equally.

Finally, probabilistic models are in general more suited
to learning with relational data than deterministic ones.
Due to their complexity, relational datasets are often
noisy, which can be troublesome for deterministic models
(Popescul et al. 2003). Furthermore, the advantage of
working with relational data may be lost without the use
of probabilistic models. For example, Craven and Slat-
tery (2001) found in the text classification domain that
“learned rules will not be dependent on the presence or
absence of specific key words as a conventional rela-
tional method. Instead, the statistical classifiers in its
learned rules consider the weighted evidence of many
words.”

Table 1: Statistical relational learning models surveyed

Model Description Selective Generative Reference
RVS relational vector-space model No no Bernstein, Clearwater, and  Provost, 2003

FOIL-PILFS relational learner w/statistical predicate invention Yes no Craven and Slattery, 2001

Maccent maximum entropy model with clausal constraints Yes no Dehaspe, 1997

SNM Markov random field for social networks No no Domingos and Richardson, 2001

BLP Bayesian logic programs yes yes Kersting and De Raedt, 2002

1BC2 first-order naive Bayesian classifier no no Lachiche and Flach, 2002

RBC relational Bayes classifier no no Neville, Jensen, Gallagher and Fairgrieve, 2003

RPT relational probability trees yes no Neville, Jensen, Friedland and Hay, 2003

SLR structural logistic regression yes no Popescul, Ungar, Lawrence, and Pennock, 2003

NBILP-R naive Bayes classifier with ILP features no no Pompe and Kononenko, 1995

PRM probabilistic relational model yes yes Getoor, Segal, Taskar and Koller, 2001

RMN relational Markov network no no Taskar, Abbeel and Koller, 2002
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4 Heterogeneous data
Claim: SRL algorithms learn accurate models of struc-
tured data.

Most conventional classification techniques assume
data instances are recorded in homogeneous structures.
Relational data however, often have complex structures
that are difficult to model in propositional form. For ex-
ample, information about actors, directors and producers
may be useful when building a model of movie success
but each movie has a different number of related entities.
This variety results in examples with diverse structure —
some movies may have 10 actors, and others may have
hundreds. The ability to deal with heterogeneous data
instances is a defining characteristic of relational learning
algorithms.

The relational learning community has developed a
number of models that can handle heterogeneous data.
For example, Lachiche and Flach (2002) extend conven-
tional naive Bayes classifiers to handle heterogeneous
instances and Deshape (1997) extends conventional
maximum entropy models to use a richer first-order logic
format.
Each of the 12 papers surveyed introduces a different
model for this purpose. However, few of these papers
evaluate the effects of heterogeneity on the learned mod-
els. Some of our recent work has examined how particu-
lar characteristics of relational data affect the statistical
inferences necessary for accurate learning (Jensen &
Neville 2002, Jensen, Neville & Hay 2003). Specifically,
we have shown that concentrated linkage combined with
high autocorrelation can lead to feature selection bias if
models are constructed naively. Also, we have shown
that degree disparity can lead to spurious correlations in
aggregated features, resulting in overly complex models
with excess structures.

These characteristics of relational data can greatly
complicate efforts to construct good statistical models.
Only selective models are vulnerable to the particular
biases mentioned above, but 7 of the models surveyed do
some form of selection while learning. It is difficult to
evaluate models for unidentified biases; however, com-
parative studies among the various SRL algorithms
should help to uncover these biases. In particular, de-
tailed comparisons of selective and non-selective model
performance may help to uncover additional biases. Fig-
ure 2 depicts the 12 SRL models with links to the various
models compared to during evaluation. The paucity of
outlinks speaks for itself.

We have only begun to explore the effects of data
characteristics on model learning. While many relational
models outperform propositional models on the same
datasets, the relational models may not be living up to
their full potential. Further investigation of the com-
plexities of relational data will help to identify sources of
potential bias and correcting for these biases will unleash
the full power of SRL models.

Figure 2: SRL models and evaluation models. Self-loops indi-
cate ablation comparisons.

5 Interdependent data
Claim: SRL algorithms learn accurate models of depend-
ent data instances.

Independence of instances is a deeply buried assump-
tion of traditional machine learning methods that is con-
tradicted by many relational datasets. For example, in
scientific literature datasets there are dependencies
among papers written by the same author and in web
datasets there are dependencies among pages linked to by
the same document. The structure of complex relational
data such as these presents a unique opportunity for im-
proving the accuracy of statistical models. If two objects
are related, inferring something about one object can aid
inferences about the other.

In our analysis of relational data, we have encountered
many examples of dependencies that could be exploited
to improve learning. For example, in analysis of the 2001
KDD Cup data we found that the proteins located in the
same place in a cell (e.g., mitochondria or cell wall) had
highly autocorrelated functions (e.g., transcription or cell
growth). Such autocorrelation has been identified in other
domains as well. For example, fraud in mobile phone
networks has been found to be highly autocorrelated
(Cortes, Pregibon & Volinsky 2001). The topics of
authoritative web pages are highly autocorrelated when
linked through directory pages that serve as “hubs”
(Kleinberg 2001).
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Many of the models surveyed do not attempt to exploit
dependencies among relational instances. More than half
of the algorithms are designed to learn models relational
datasets with independent, heterogeneous instances (i.i.d.
relational data) where any dependencies among instances
are ignored.

Inductive logic programming (ILP) models have been
capable of representing dependencies among instances
for years, albeit only extreme (deterministic) dependen-
cies (Lavrac & Dzeroski 1994). However, it is only re-
cently that statistical models have been developed to ex-
ploit the dependencies in relational data. For example,
Kersting and De Raedt (2002) combine ILP with Baye-
sian networks to integrate probabilities into logic pro-
grams and model the dependencies among proteins in a
cell. Getoor et al. (2001) use probabilistic relational
models (PRMs) to model the the dependencies among
hyperlinked web pages. Taskar, Abbeel and Koller
(2002) use conditional Markov networks to model the
same domain. Domingos and Richardson (2001) repre-
sent market entities as social networks and develop
Markov random field models to model the influence in
purchasing patterns throughout the network. Bernstein,
Clearwater and Provost (2003) outline a relational vector-
space model that uses autocorrelation to identify the
group membership of linked entities.

Statistical models capable of collective classification
across a network of instances are a relatively new phe-
nomenon. It is unclear how to effectively evaluate the
performance of these models. In what context do we ex-
pect to be using these models in the real world? Will we
be applying the model to a completely new graph or do
we expect new instances to arrive temporally related to
the existing (training set) graph. Answers to this question
should help to develop sampling methods to get an unbi-
ased estimate of model performance.

Furthermore, how should we sample from a large con-
nected graph? Table 2 outlines the characteristics of
datasets examined by each of the models along with the
sampling approach that was chosen. There are four ap-
proaches to sampling currently in use; more work is

needed to determine which of these approaches is appro-
priate for a particular learning task.

6 Conclusions
Although the SRL community has successfully demon-
strated the feasibility of a number of probabilistic models
for relational data, there is much work to be done in order
to begin generalizing the range and applicability of the
various models. We have presented four claims for dis-
cussion with the purpose of advancing the science of
SRL as well as machine learning in general.
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Abstract

Instance independence is a critical assumption of tra-
ditional machine learning methods contradicted by many
relational datasets. For example, in scientific literature
datasets there are dependencies among the references of a
paper. Recent work on graphical models for relational data
has demonstrated significant performance gains for mod-
els that exploit the dependencies among instances. In this
paper, we present relational dependency networks (RDNs),
a new form of graphical model capable of reasoning with
such dependencies in a relational setting. We describe the
details of RDN models and outline their strengths, most no-
tably the ability to learn and reason with cyclic relational
dependencies. We present RDN models learned on a num-
ber of real-world datasets, and evaluate the models in a
classification context, showing significant performance im-
provements. In addition, we use synthetic data to evaluate
the quality of model learning and inference procedures.

1. Introduction

Relational data pose a number of challenges for model
learning and inference. The data have complex dependen-
cies, both as a result of direct relations (e.g., research pa-
per references) and through chaining multiple relations to-
gether (e.g., papers published in the same journal). The
data also have varying structure (e.g., papers have different
numbers of authors, references and citations). Traditional
graphical models such as Bayesian networks and Markov
networks assume that data consist of independent and iden-
tically distributed instances, which makes it difficult to use
these techniques to model relational data that consist of non-
independent and heterogeneous instances. Recent research
in relational learning has produced several novel types of
graphical models to address this issue. Probabilistic rela-
tional models (PRMs)1 (e.g. [5, 15, 14]) estimate joint prob-

1Several previous papers (e.g., [5]) use the term PRM to refer to a spe-
cific type of model that the originators now call a relational Bayesian net-

ability distributions of relational data and have been evalu-
ated successfully in several domains, including the World
Wide Web, genomic structures, and scientific literature.

In this paper, we present relational dependency networks
(RDNs), an extension of dependency networks [6] for rela-
tional data2. RDN models are a new form of PRM that of-
fer several advantages over the comparable joint models—
relational Bayesian networks (RBNs) [5] and relational
Markov networks (RMNs) [15]. Specifically, the strengths
of RDNs include: (1) an interpretable representation that
facilitates knowledge discovery in relational data, (2) the
ability to represent arbitrary cyclic dependencies, includ-
ing relational autocorrelation, and (3) simple and efficient
methods for learning both model structure and parameters.

Graphical models are an attractive modeling tool for
knowledge discovery because they are a compact represen-
tation of the joint distribution of a set of variables, which
allows key dependencies to be expressed and irrelevancies
to be ignored [2]. The qualitative properties of the model are
encoded in thestructureof the graph, while the quantitative
properties are specified by theparametersof the associated
probability distributions. The models are often easy to in-
terpret because the graph structure can be used to infer de-
pendencies among variables of interest. PRMs maintain this
property as they extend conventional graphical models to re-
lational settings. A compact representation is even more de-
sirable for modeling relational data, because the enormous
space of possible dependencies can overwhelm efforts to
identify novel, and interesting patterns.

The ability to represent, and reason with, arbitrary cyclic
dependencies is another important characteristic of rela-
tional models. Relational autocorrelation, a statistical de-
pendency among values of the same variable on related en-
tities [7], is a nearly ubiquitous phenomenon in relational
datasets. For example, hyperlinked web pages are more

work (Koller, personal communication). In this paper, we use PRM in its
more recent and general sense.

2This work generalizes our previous work on simple RDNs for classi-
fication [12].
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likely to share the same topic than randomly selected pages,
and proteins located in the same place in a cell are more
likely to share the same function than randomly selected
proteins. Recent work has shown that autocorrelation de-
pendencies can be exploited to improve classification ac-
curacy, if inferences about related data instances are made
simultaneously (e.g., [3, 15, 12]). However, these rela-
tional autocorrelation dependencies are often cyclic in na-
ture, making it difficult to encode these dependencies with
directed graphical models such as RBNs unless the autocor-
relation can be structured to be acyclic (e.g., with temporal
constraints) [5]. In contrast, undirected graphical models
such as RMNs, and RDNs, can represent arbitrary forms of
relational autocorrelation.

During learning, relational models consider a large num-
ber of features, thus simple and efficient learning tech-
niques are advantageous, particularly for joint models. The
RDN learning algorithm is based on pseudolikehood tech-
niques [1], which estimate a set of conditional distributions
independently. This approach avoids the complexities of es-
timating a full joint distribution and can incorporate existing
techniques for learning conditional probability distributions
of relational data. Relatively efficient techniques exist for
learning both the structure and parameters of RBN mod-
els but the acyclicity constraints of the model precludes the
learning of arbitrary autocorrelation dependencies. On the
other hand, while in principle it is possible for RMN tech-
niques to learn cyclic autocorrelation dependencies, ineffi-
ciencies due to modeling the full joint distribution make this
difficult in practice. The current implementation of RMNs
is not capable of learning model structure automatically, nor
can it automatically identify which features are most rele-
vant to the task; research has focused primarily on parame-
ter estimation and inference procedures. To our knowledge,
RDNs are the first PRM capable oflearningcyclic autocor-
relation dependencies.

We begin by reviewing the details of dependency net-
works for propositional data and then describe how to ex-
tend them to a relational setting. Next, we present RDN
models learned from four real-world datasets and evaluate
the models in a classification context, demonstrating equiv-
alent, or better, performance in comparison to conditional
models. Finally, we report experiments on synthetic data
that show model learning and inference is robust to vary-
ing levels of autocorrelation and that accurate models can
be learned from small training set sizes.

2. Dependency Networks
Graphical models represent a joint distribution over a

set of variables. The primary distinction between Bayesian
networks, Markov networks and dependency networks
(DNs) [6] is that dependency networks are an approximate
representation. DNs approximate the joint distribution with

a set of conditional probability distributions (CPDs), which
are learned independently. This approach to learning is a
relatively simple technique for parameter estimation and
structure learning that results in significant efficiency gains
over exact models. However, because the CPDs are learned
independently, DN models are not guaranteed to specify a
consistentjoint distribution. This precludes DNs from be-
ing used to infer causal relationships and limits the applica-
bility of exact inference techniques. Nevertheless, DNs can
encode predictive relationships (i.e. dependence and inde-
pendence) and Gibbs sampling (e.g. [11]) inference tech-
niques can be used to recover a full joint distribution, re-
gardless of the consistency of the local CPDs.

DN Representation. A DN encodes probabilistic rela-
tionships among a set of variables in a similar manner to
Bayesian and Markov networks, combining characteristics
of both undirected and directed models. DN models con-
sists of a graphG, which encodes thestructureof the model,
and a set of probability distributionsP , which encode the
parametersof the model. Dependencies among variables
are represented with a bidirected graphG = (V,E), where
conditional independence is interpreted using graph sepa-
ration, as with undirected models. However, as with di-
rected models, dependencies are quantified with a set of
conditional probability distributionsP . Consider the set
of variablesX = (X1, ..., Xn) over which we’d like to
model the joint distributionp(x) = p(x1, ..., xn). Each
nodevi ∈ V corresponds to anXi ∈ X and is associated
with a probability distribution conditioned on the other vari-
ables,P (vi) = p(xi|x − {xi}). The parents,pai, of node
i are the set of variables that renderXi conditionally inde-
pendent of the other variables (p(xi|pai) = p(xi|x−{xi}))
andG contains a directed edge from each parent nodevj to
each child nodevi (e(vj , vi) ∈ E iff xj ∈ pai).

DN Learning. Both the structure and parameters of DN
models are determined through learning a set of local con-
ditional probability distributions (CPDs). The DN learning
algorithm learns a separate CPD for each variableXi, con-
ditioned on the other variables in the data (X−{Xi}). Any
conditional learner can be used for this task (e.g. logistic
regression, decision trees). The learned CPD is included in
the model asP (vi), and the variables selected by the con-
ditional learner (e.g.,xi = αxj + βxk) form the parents
of Xi (e.g., pai = {xj , xk}), which is then reflected in
the edges ofG appropriately. If the conditional learner is
not selective, the DN model will be fully connected (i.e.,
pai = x − {xi}). In order to build understandable DNs, it
is desirable to use a selective learner that will learn CPDs
that use a subset of all variables.

DN Inference. Although the DN approach to structure
learning is simple and efficient, it can result in an incon-
sistent network, both structurally and numerically. In other
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words, there may be no joint distribution from which each
of the CPDs can be obtained using the rules of probabil-
ity. For example, a network that contains a directed edge
from Xi to Xj , but not fromXj to Xi, is inconsistent—
Xi andXj are dependent butXj is not represented in the
CPD forXi. A DN is consistent if the conditional distribu-
tions inP factor the joint distribution—in this case we can
compute the joint probability for a set of valuesx directly.
In practice, [6] show that DNs will be nearly consistent if
learned from large data sets, since the data serve a coordi-
nating function that ensures consistency among the CPDs.
If a DN is inconsistent, approximate inference techniques
can be used to estimate the full joint distribution and extract
probabilities of interest. Gibbs sampling (e.g., [11]) can be
used to recover a full joint distribution forX, regardless of
the consistency of the local CPDs, provided that eachXi is
discrete and each local CPD is positive [6].

3. Relational Dependency Networks

RDNs extend dependency networks to a relational set-
ting. DNs have been shown to perform comparably to BNs
for a number of propositional tasks [6], thus we expect they
will achieve similar performance levels in relational set-
tings. Also, several characteristics of DNs are particularly
desirable for modeling relational data. First, learning a col-
lection of conditional models offers significant efficiency
gains over learning a full joint model—this is generally true,
but is even more pertinent to relational settings where the
feature space is very large. Second, networks that are easy
to interpret and understand aid analysts’ assessment of the
utility of the relational information. Third, the ability to
represent cycles in a network facilitates reasoning with rela-
tional autocorrelation, a common characteristic of relational
data. Finally, while the need for approximate inference is a
disadvantage of DNs for propositional data, due to the com-
plexity of relational model graphs in practice, all PRMs use
approximate inference.

RDNs extend DNs for relational data in the same way
that RBNs [5] extend Bayesian networks and RMNs [15]
extend Markov networks. We describe the general charac-
teristics of PRMs and then discuss the details of RDNs.

3.1. Probabilistic Relational Models

PRMs represent a joint probability distribution over a re-
lational dataset. When modeling attribute-value data with
graphical models, there is a single graphG that is associ-
ated with the modelM . In contrast, there are three graphs
associated with models of relational data: thedata graph
GD, themodel graphGM , and theinference graphGI .

First, the relational dataset is represented as a typed, at-
tributed graphGD = (VD, ED). For example, consider the
data graph in figure 1a. The nodesVD represent objects in

the data (e.g., authors, papers) and the edgesED represent
relations among the objects (e.g., author-of, cites). We use
rectangles to represent objects, circles to represent random
variables, dashed lines to represent relations, and solid lines
to represent probabilistic dependencies. Each nodevi ∈ VD

is associated with a typeT (vi) = tvi (e.g.,paper). Each ob-
ject typet ∈ T has a number of associated attributesXt =
(Xt

1, ..., X
t
n) (e.g., topic, year). Consequently, each object

vi is associated with a set of attribute values determined by
its typeX

tvi
vi = (Xtvi

vi1
, ..., X

tvi
vin). A PRM model represents

a joint distribution over the values of the attributes through-
out the data graph,x = {xtvi

vi : vi ∈ V, tvi
= T (vi)}.

(a) (b)

Paper

Author

Paper

Paper

Author

Author
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Figure 1. PRM (a) data, and (b) model graph.

The dependencies among attributes are represented in
the model graphGM = (VM , EM ). Attributes of an ob-
ject can depend probabilistically on other attributes of the
same object, as well as on attributes of other related ob-
jects inGD. For example, the topic of a paper may be in-
fluenced by attributes of the authors that wrote the paper.
Instead of defining the dependency structure over attributes
of specific objectsXv, PRMs define a generic dependency
structure at the level of object types. The set of attributes
Xt

k = (Xt
vik

: vi ∈ V, T (vi) = t) is tied together and
modeled as a single variable. Each nodevi ∈ VM corre-
sponds to anXt

k, t ∈ T ∧ Xt
k ∈ Xt. As in conventional

graphical models, each node is associated with a probabil-
ity distribution conditioned on the other variables. Parents
of Xt

k are either: (1) other attributes associated with typetk
(e.g., papertopic depends on papertype), or (2) attributes
associated with objects of typetj where objectstj are re-
lated to objectstk in GD (e.g., papertopic depends on au-
thor rank). For the latter type of dependency, if the relation
betweentk andtj is one-to-many, the parent consists of a
set of attribute values (e.g., author ranks). In this situation,
PRMs use aggregation functions, either to map sets of val-
ues into single values, or to combine a set of probability
distributions into a single distribution.

For example, consider the model graph in figure 1b. It
models the data in figure 1a, which has two object types:
paper and author. InGM , each object type is represented by
a plate, and each attribute of each object type is represented
as a node. The edges ofGM characterize the dependencies
among the attributes at the type level.

During inference, a PRM uses theGM andGD to in-
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stantiate an inference graphGI = (VI , VE) in a process
sometimes called “rollout”. The rollout procedure used by
PRMs to produce theGI is nearly identical to the process
used to instantiate models such as hidden Markov models
(HMMs), and conditional random fields (CRFs) [9].GI

represents the probabilistic dependencies among all the ob-
ject variables in a single test set (hereGD is different from
the G ′

D used for training). The structure ofGI is deter-
mined by bothGD andGM—each object-attribute pair in
GD gets a separate, local copy of the appropriate CPD from
GM . The relations inGD constrain the way thatGM is
rolled out to formGI . PRMs can produce inference graphs
with wide variation in overall and local structure, because
the structure ofGI is determined by the specific data graph,
which typically has non-uniform structure. For example,
figure 2 shows the PRM from figure 1b rolled out over a
data set of three authors and three papers, whereP1 is au-
thored byA1 andA2, P2 is authored byA2 andA3, andP3

is authored byA3. Notice that there is a variable number
of authors per paper. This illustrates why PRM CPDs must
aggregate—for example, the CPD for paper-type must be
able to deal with a variable number of author ranks.
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Figure 2. Example PRM inference graph.

3.2. RDN Models

An RDN model encodes probabilistic relationships in a
similar manner to DN models, extending the representation
to a relational setting. RDNs use a bidirected model graph
GM with a set of conditional probability distributionsP .
Each nodevi ∈ VM corresponds to anXt

k ∈ Xt, t ∈ T and
is associated with a conditional distributionp(xt

k | paxt
k
).

Figure 1b illustrates an example RDN model graph for the
data graph in figure 1a. The graphical representation illus-
trates the qualitative component (GD) of the RDN—it does
not depict the quantitative component (P ) of the model,
which includes aggregation functions. The representation
uses a modified plate notation; dependencies among at-
tributes of the same object are contained inside the rectangle
and arcs that cross the boundary of the rectangle represent
dependencies among attributes of related objects. For ex-
ample,monthi depends ontypei, while avgrankj depends
on thetypek andtopick for all papersk related to authorj
in GD. Although conditional independence is infered using
an undirected view of the graph, bidirected edges are useful

for representing the set of variables in each CPD. For ex-
ample, in figure 1b, the CPD foryearcontainstopicbut the
CPD for topic does not containtype. This shows inconsis-
tencies that may result from the RDN learning technique.

Learning. The RDN learning algorithm is much like the
DN learning algorithm, except we use a selective relational
classification algorithm to learn a set of conditional models.
The algorithm input consists of: (1) a data graphGD, with a
set of typesT and attributesX, (2) a conditional relational
learnerR, and (3) a search limitc, which limits the length
of paths inGD that are considered inR. For eacht ∈ T ,
and eachXt

k ∈ Xt, the algorithm usesR to learn a CPD
for Xt

k given the set of attributes{Xt
k′ 6=k} ∪Xt′ 6=t, where

t′ is up toc links away fromt in GD. The resulting CPDs
are included inP and are used to formGM .

We use relational probability trees (RPTs) [13] for the
CPD components of the RDN. The RPT learning algorithm
adjusts for biases towards particular features due to degree
disparity and autocorrelation in relational data [7, 8]. We
have shown that RPTs build significantly smaller trees than
other conditional models and achieve equivalent, or better,
performance. This characteristic of the RPTs is crucial for
learning understandable RDN models. The collection of
RPTs will be used during inference so the size of the mod-
els also has a direct impact on efficiency. We expect that
the general properties of RDNs would be retained if other
approaches to learning conditional probability distributions
were used instead, given that those approaches are both se-
lective and accurate.

RPTs extend probability estimation trees to a relational
setting. RPT models estimate probability distributions over
class label values in the same manner as conventional classi-
fication trees, but the algorithm looks beyond the attributes
of the item for which the class label is defined and consid-
ers the effects of attributes in the local relational neighbor-
hood (≤ c links away) on the probability distribution. The
RPT algorithm automatically constructs and searches over
aggregated relational features to model the distribution of
the target variable—for example, to predict the value of an
attribute (e.g., paper topic) based on the attributes of related
objects (e.g., characteristics of the paper’s references), a re-
lational feature may ask whether the oldest reference was
written before1980.

Inference. The RDN inference graphGI is potentially
much larger than the original data graph. To model the full
joint distribution there must be a separate node (and CPD)
for each attribute value inGD. To constructGI , the set of
template CPDs inP is rolled-out over the data graph. Each
object-attribute pair gets a separate, local copy of the ap-
propriate CPD. Consequently, the total number of nodes in
the inference graph will be

∑
v∈VD

|XT(v)|. Rollout facili-
tates generalization across data graphs of varying size—we
can learn the CPD templates from one data graph and apply
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the model to a second data graph with a different number of
objects by rolling out more CPD copies.

We use Gibbs sampling (e.g. [11]) for inference in RDN
models. To estimate a joint distribution, the inference graph
consists of a rolled-out network with unobserved variables.
The values of all unobserved variables are initialized to val-
ues drawn from their prior distributions. Gibbs sampling
then iteratively relabels each unobserved variable by draw-
ing from its local conditional distribution, given the current
state of the rest of the graph. After a sufficient number of
iterations, the values will be drawn from a stationary distri-
bution and we can use the samples to estimate probabilities
of interest. For the experiments reported in this paper we
use a fixed-length chain of 2000 samples (each iteration re-
labels every value sequentially), with a burn-in of 200.

4. Experiments

The experiments in this section are intended to demon-
strate the utility of RDNs as a joint model of relational data.
We learn RDN models of four real world datasets to illus-
trate the types of domain knowledge that can be garnered.
In addition, we evaluate the models in a classification con-
text, where only a single attribute is unobserved in the test
set, and report significant performance gains compared to a
conditional model. Finally, we use synthetic data to assess
the impact of training set size and autocorrelation on RDN
learning and inference, showing that accurate models can
be learned at small data set sizes and that the model is ro-
bust to all but extreme levels of autocorrelation. For these
experiments, we used the parametersR = RPT andc = 2.
The RPT algorithm usedMODE, COUNTandPROPORTION
features with10 thresholds per attribute.

The RDN models in figures 3-5 continue with the RDN
representation introduced in figure 1. Each object type is
represented in a separate plate, arcs inside a plate indicate
dependencies among the attributes of a single object and
arcs crossing the boundaries of plates indicate dependen-
cies among attributes of related objects. An arc fromx to
y indicates the presence of one or more features ofx in the
RPT learned fory.

When the dependency is on attributes of objects more
than a single link away, the arc is labeled with small rect-
angle to indicate the intervening object type. For example,
movie genre is influenced by the genres of other movies
made by the movie’s director, so the arc would be labeled
with a smallD rectangle.

In addition to dependencies among attribute values,
RPTs also learn dependencies between the structure of the
relations (edges inGD) and the attribute values. Thisdegree
relationship is represented by a small black circle in the cor-
ner of each plate, arcs from this circle indicate a dependency
between the number of related objects and an attribute value

of a related object. For example, movie receipts is influ-
enced by the number of actors in the movie.

4.1. RDN Models

The first data set is drawn from the Internet Movie
Database (www.imdb.com). We collected a sample of 1,382
movies released in the United States between 1996 and
2001. In addition to movies, the data set contains objects
representing actors, directors, and studios. In total, this
sample contains approximately 42,000 objects and 61,000
links. We learned a RDN model for ten discrete attributes
including actor gender and movie opening weekend receipts
(>$2million). Figure 3 shows the resulting RDN model.
Four of the attributes, movie receipts, movie genre, actor
birth year, and director1st movie year, exhibit autocorre-
lation dependencies. Exploiting this type of dependency
has been shown to significantly improve classification ac-
curacy of RMNs compared to RBNs which cannot model
cyclic dependencies [15]. However, to exploit autocorre-
lation the RMN must be instantiated with a corresponding
clique template—the dependency must be pre-specified by
the user. To our knowledge, RDNs are the first PRM capa-
ble of learningthis type of autocorrelation dependency.
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Figure 3. Internet Movie database RDN.

The second data set is drawn from Cora, a database of
computer science research papers extracted automatically
from the web using machine learning techniques [10]. We
selected the set of 4,330 machine-learning papers along
with associated authors, cited papers, and journals. The
resulting collection contains approximately 13,000 objects
and 26,000 links. We learned an RDN model for seven at-
tributes including paper topic (e.g., neural networks) and
journal name prefix (e.g., IEEE). Figure 4 shows the result-
ing RDN model. Again we see that four of the attributes
exhibit autocorrelation. In particular, notice that the topic
of a paper depends not only on the topics of other papers
that it cites, but also on the topics of other papers written by
the authors. This model is a good reflection of our domain
knowledge about machine learning papers.

The third data set was collected by the WebKB
Project [4]. The data consist of a set of 3,877 web pages
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from four computer science departments. The web pages
have been manually labeled with the categories: course, fac-
ulty, staff, student, research project, or other. The collection
contains approximately 4,000 web pages and 8,000 hyper-
links among those pages. We learned an RDN model for
four attributes of the web pages including school and page
label. Figure 5a shows the resulting RDN model.
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Figure 4. Cora machine-learning papers RDN.

The fourth data set is a relational data set containing in-
formation about the yeast genome at the gene and the pro-
tein level (www.cs.wisc.edu/∼dpage/kddcup2001/). The
data set contains information about 1,243 genes and 1,734
interactions among their associated proteins. We learned an
RDN model for seven attributes. The attributes of the genes
included protein localization and function, and the attributes
on the interactions included type and level of expression.
Figure 5b shows the resulting RDN model.
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Figure 5. (a) WebKB, and (b) gene data RDNs.

4.2. Classification Experiments

We evaluate the learned models on classification tasks
in order to assess (1) whether autocorrelation dependencies
among instances can be used to improve model accuracy,
and (2) whether the RDN models, using Gibbs sampling,
can effectively infer labels for a network of instances. To
do this, we compare three models. The first model is a con-
ventional RPT model—an individual classification model
that reasons about each instance independently from other
instances and thus does not use the class labels of related in-
stances. The second model is a RDN model that exploits ad-
ditional information available in labels of related instances
and reasons about networks of instances collectively. The
third model is a probabilistic ceiling for the RDN model.

We use the RDN model but allow the true labels of related
instances to be used during inference. This model shows the
level of performance possible if the RDN model could infer
the true labels of related instances with perfect accuracy.
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Figure 6. AUC results for classification tasks.

Figure 6 shows area under the ROC curve (AUC) results
for each of the three models on four classification tasks. We
used the following prediction tasks: IMDb: movie receipts,
Cora: paper topic, WebKB: page label, Gene: gene loca-
tion. The graph shows AUC for the most prevalent class,
averaged over a number of training/test splits. For IMDb
and Cora, we used 4-5 temporal samples where we learned
models on one year of data and applied the model to the
subsequent year. For WebKB, we used cross-validation by
department, learning on three departments and testing on
pages from the fourth held out department. For Gene there
was no clear sampling choice, so we used ten-fold cross
validation on random samples of the genes. We used two-
tailed, paired t-tests to assess the significance of the AUC
results obtained from the trials. The t-tests compare the
RDN results to each of the other two models. The null hy-
pothesis is that there is no difference in the AUC results
of the two models; the alternative is that there is a differ-
ence. The differences in performance that are significant at
ap < 0.05 level are reported in the graph with asterisks.

On three of the tasks, the RDNs models achieve compa-
rable performance to the ceiling models and on the fourth
(WebKB) the difference is not statistically significant. This
indicates that the RDN model realized its full potential,
reaching the same level of performance as if it had access
to the true labels of related movies. On the Gene data, the
RDN surpasses the performance of the ceiling model, but is
only a probabilistic ceiling—the RDN may perform better
if an incorrect prediction for one object improves the clas-
sification of related objects. Also, the performance of the
RDN models is superior to RPT models on all four tasks.
This indicates that autocorrelation is both present in the data
and identified by the RDN models. The performance im-
provement over RPTs is due to successful exploitation of
this autocorrelation. On the Cora data, the RPT model per-
formance is no better than random because autocorrelation
is the only predictor of paper topic (see figure 4).
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4.3. Synthetic Data Experiments

To explore the effects of training set size and autocor-
relation on RDN learning and inference, we generated ho-
mogeneous data graphs with a regular square lattice struc-
ture. With the exception of objects along the outer bound-
ary, each object in the lattice links to four immediate neigh-
bors positioned above, below, left, and right. The first and
last row and column make up theframeof the lattice. In or-
der to control for effects of varying structure, objects in the
frame are not used during learning and inference, although
their attribute values are available to objects in the core for
learning and inference. Thus, training or test sets of sizeN
correspond to a lattice of(

√
N + 2)2 objects, and models

are trained or evaluated on theN objects in the core of the
lattice. Each object has four boolean attributesX1, X2, X3

andX4. We use a simple RDN whereX1 is autocorrelated
(through objects one link away),X2 depends onX1, and
the other two attribute have no dependencies.

We generated the values of attributes using the RDN in
the following way. We begin by assigning each object in the
lattice an initial value forX1 with P (x1 = 1) = 0.5. We
then perform Gibbs sampling over the entire lattice to esti-
mate the values ofX1 conditioned on neighboring values.
The values assigned to each object after 200 iterations are
used as the final labels. We use a manually specified RPT
that assignsX1 values to each object based on theX1 val-
ues of objects one link away inGD. The parameters of this
model are varied to produce different levels of autocorrela-
tion in X1. OnceX1 values are assigned, values forX2 are
randomly drawn from a distribution conditioned on objects’
X1 values. We used the parametersp(x2 = 1) = 0.3 and
p(x1 = 1|x2 = 1) = 1− p(x1 = 0|x2 = 1) = 0.9. Finally,
random values are assigned to the two other attributes with
p(x3 = 1) = p(x4 = 1) = 0.5. Once a dataset is generated,
we measure the proportion of objects withX1 = 1, and any
dataset with a value outside the range[0.4, 0.6] is discarded
and replaced by a new dataset. This ensures consistency in
the distribution ofX1 across datasets and reduces variance
in estimated model performance.

The first set of synthetic experiments examines the effec-
tiveness of the RDN learning algorithm. Figure 7a graphs
the log-likelihood of learned models as a function of train-
ing set size. Training set size was varied at the follow-
ing levels{25, 49, 100, 225, 484, 1024, 5041}. Figure 7b
graphs log-likelihood as a function of autocorrelation. Au-
tocorrelation was varied to approximate the following levels
{0.0, 0.25, 0.50, 0.75, 1.0}. (We graph the average autocor-
relation for each set of trials, which is within 0.02 of these
numbers.) At each data set size (autocorrelation level), we
generated 25 training sets and learned RDNs. Using each
learned model, we measured the average log-likelihood of
another 25 test sets (size 225). Figure 7 plots these mea-
surements as well as the log-likelihood of the test data from

the RDN used for data generation. These experiments show
that the learned models are a good approximation to the true
model by training set size 1000, and that RDN learning is
robust with respect to varying levels of autocorrelation.
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Figure 7. Evaluation of RDN learning.

The second set of synthetic experiments evaluates the
RDN inference procedure in a classification context, where
only a single attribute is unobserved in the test set. We gen-
erated data in the manner described above, learned an RDN
for X1, used the learned models to infer the class labels of
unseen test sets, and measured AUC to evaluate the predic-
tions. These experiments compared the same three models
as section 4.2, and used the same training set sizes and au-
tocorrelation levels outlined above. At each data set size
(autocorrelation level), we generated 25 training and test set
pairs, learned the model on the training set, and inferred la-
bels for the test set.

Figure 8a graphs AUC as a function of training set size
for RDNs compared to RPTs and the ceiling, plotting the
average AUC for each model type. Even at small data set
sizes the RDN performance is close to optimal and signif-
icantly higher than the performance of the RPTs. Surpris-
ingly, the RPTs are able to achieve moderately good results
even without the class labels of related instances. This is be-
cause the RPTs are able to use the attribute values of related
instances as a surrogate for autocorrelation.

Figure 8b plots average AUC as a function of autocorre-
lation for RDNs compared to RPTs and the ceiling. When
there is no autocorrelation, the RPT models perform opti-
mally. In this case, the RDNs are slightly biased due to
excess structure. However, as soon as there is minimal auto-
correlation, the RDN models start to outperform the RPTs.
At the other extreme, when autocorrelation is almost per-
fect the RDNs experience a large drop in performance. At
this level of autocorrelation, the Gibbs sampling procedure
can easily converge to a labeling that is “correctly” auto-
correlated but with opposite labels. Although all 25 tri-
als appeared to converge, half performed optimally and the
other half performed randomly (AUC≈ 0.50). Future work
will explore ways to offset this drop in performance. How-
ever, the utility of RDNs for classification is clear in the
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range of autocorrelations that have been observed empiri-
cally [0.25,0.75].
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Figure 8. Evaluation of RDN inference.

5. Discussion and Conclusions

In this paper we presented RDNs, a new form of PRM.
The primary advantage of RDN models is the ability to learn
and reason with relational autocorrelation. We showed the
RDN learning algorithm to be a relatively simple method
for learning the structure and parameters of a probabilistic
graphical model. In addition, RDNs allow us to exploit ex-
isting techniques for learning conditional probability distri-
butions. Here we have chosen to exploit our prior work on
RPTs, which constructs parsimonious models of relational
data, but we expect that the general properties of RDNs
would be retained if other approaches to learning condi-
tional probability distributions were used, given that those
approaches are both selective and accurate.

The results of the real and synthetic data experiments
indicate that collective classification with RDNs can of-
fer significant improvement over conditional approaches to
classification when autocorrelation is present in the data—a
nearly ubiquitous characteristic of relational datasets. The
performance of RDNs also approaches the performance that
would be possible if all the class labels of related instances
were known. Future work will compare RDN models to
RMN models in order to better assess the quality of the
pseudolikelihood approximation of the joint distribution. In
addition, we are exploring improved inference procedures
that consider the autocorrelation dependencies in the data
in order to improve inference accuracy and efficiency.
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Abstract

Autocorrelation, a common characteristic of
many datasets, refers to correlation between
values of the same variable on related ob-
jects. It violates the critical assumption of in-
stance independence that underlies most con-
ventional models. In this paper, we provide
an overview of research on autocorrelation in
a number of fields with an emphasis on im-
plications for relational learning, and outline
a number of challenges and opportunities for
model learning and inference.

1. Introduction

Autocorrelation refers to correlation between values of
the same variable on related objects. More formally,
it is defined with respect to a set of related instance
pairs (zi, zj) ∈ Z and a variable X defined on these
instances, and is the correlation between the values
of X on these instance pairs. Autocorrelation is a
common characteristic of many datasets. For exam-
ple, hyperlinked web pages are more likely to share
the same topic than randomly selected pages (Taskar
et al., 2002), and proteins located in the same place in
a cell (e.g., mitochondria or cell wall) are more likely
to share the same function (e.g., transcription or cell
growth) than randomly selected proteins (Neville &
Jensen, 2002).

The prevalence of autocorrelation is not unexpected—
a number of widely occurring phenomena give rise to
such dependencies. Temporal and spatial locality very
often result in autocorrelated observations, due to tem-
poral or spatial dependence of measurement errors, or
the existence of a variable whose influence is correlated
among instances that are located closely in time or
space (Mirer, 1983; Anselin, 1998). Social phenomena
such as social influence (Marsden & Friedkin, 1993),
diffusion processes (Doreian, 1990), and the princi-

ple of homophily (McPherson et al., 2001) give rise
to autocorrelated observations as well, through their
influence on social interactions that govern the data
generation process.

Presence of autocorrelation is a strong motivation for
relational learning and inference. It is well known
that in relational domains, joint inference over an en-
tire dataset results in more accurate predictions than
conditional inference over each instance independently
(Macskassy & Provost, 2003; Chakrabarti et al., 1998;
Taskar et al., 2002; Yang et al., 2002; Neville & Jensen,
2003). Recent work has shown that the improvement
over conditional models increases with increased auto-
correlation (Jensen et al., 2004)—autocorrelation al-
lows inferences on one object to be useful for inferences
on related objects.

The presence of autocorrelation, however, also
presents additional challenges for learning. A major
difficulty is that the assumption of independent data
instances that underlie most conventional models is
no longer valid. For instance, in models constructed
from temporal and spatial datasets, autocorrelation
has long been recognized as a source of increased bias
and variance (Anselin, 1998). These problems are only
more severe in relational data that do not exhibit the
regularities of temporal and spatial datasets. For ex-
ample, linkage—a measure of the number of related
instances—can be far greater and can vary dramati-
cally throughout the dataset, and it is known that link-
age interacts with autocorrelation to increase variance
and such variance can bias feature selection toward
features with the least amount of evidence (Jensen &
Neville, 2002).

Datasets exhibiting autocorrelation are common in
many fields including sociology, economics, geography,
and physics (Doreian, 1990). Social network analysis
often examines networks of social interactions which
exhibit homophily. For example, in elementary school
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friendship networks, same-gender ties are more likely
than different-gender ties (Anderson et al., 1999).
Economic analysis often examines datasets with re-
peated measures of the same variable over time, which
typically exhibit temporal autocorrelation (e.g., stock
prices). As a consequence, researchers in these fields
have investigated the effects of autocorrelation in pa-
rameter estimation, hypothesis testing, and structure
search.

A common finding in these disparate fields is that de-
partures from independence cannot be ignored—they
may cause unduly complex models, and biased, in-
consistent, or inefficient estimators. One possible ap-
proach is to design new statistical procedures that are
robust to autocorrelation. A second one is to model
dependencies explicitly.

In this paper, we provide an overview of research on
autocorrelation in these fields with an emphasis on im-
plications for machine learning. The remainder of this
paper is organized as follows: First, we provide an
overview of work in temporal sequence analysis focus-
ing on work in econometrics. This field has a long
history of analyzing the effects of autocorrelation. We
next discuss research in spatial statistics that extend
one-dimensional temporal models to address the needs
of higher-dimensional spatial data, and continue with
work in social network analysis on general network
data. We then briefly outline models in relational
learning and discuss the utility and implications of
work in related fields for relational learning models.

2. Temporal Sequential Models

Linear regression models are commonly employed in
both natural and social sciences to model the depen-
dence of a single response variable Y on a set of pre-
dictor variables X = {X1, . . . , Xm}. The conventional
linear regression model is specified as follows:

Yi = βXi + εi (1)

where β is a vector of weights, ε is a normally-
distributed error term with mean 0, and i is an in-
dex over data instances. The weight vector β is usu-
ally estimated using Ordinary Least Squares (OLS),
which is known to be the Best Linear Unbiased Esti-
mator (BLUE)—the minimum variance estimator for
the class of linear unbiased estimators.

One of the implicit assumptions underlying these mod-
els is that instances are independent. However, this
assumption is violated in many datasets consisting of

observations over time. For example, the daily closing
price of a stock market index (e.g., S&P500) can be
represented as a time series. It is well known that stock
prices exhibit autocorrelation over time—the best pre-
diction of tomorrow’s stock prices is based on today’s
prices (Wooldrige, 2003). 1

If a conventional linear regression model is used to
model autocorrelated data, the residuals of the model
will be autocorrelated. This violates the modeling as-
sumption of independent and identically distributed
errors. For example, if equation 1 is used to regress
a number of market indicators X (e.g. unemployment
rate, federal interest rate) on the index price Y , errors
will be similar for instances close in time due to the
autocorrelation of Y . Serially correlated errors can
be detected using a variety of statistics. The most
widely-used is the Durbin-Watson statistic, which is a
normalized sum of the squared differences of successive
terms in a time series (Kennedy, 1998).

When the errors are autocorrelated, OLS esti-
mators are unbiased, but they are no longer
BLUE (Wooldrige, 2003). That is, there exist other
unbiased linear estimators with lower variance. Not
accounting for the autocorrelation structure results in
larger sampling errors for the β estimates. Typically,
this increased variance will bias hypothesis tests in the
direction of increased Type I errors (rejecting the null
hypothesis when it is true) and will result in incorrect
conclusions of significance. Furthermore, the amount
of bias will increase as the level of autocorrelation in-
creases.

Autocorrelated errors typically arise in one of two sit-
uations. First, autocorrelated errors may be due to
correlated measurement errors. For example, trading
patterns can produce serially correlated estimates of
stock returns even when there is no serial correlation
for returns in general. Returns are measured using
the price of the stock on the last trade in a given time
period; if the measurement time period is short and
the stock is sparsely traded, the estimates of return
values will exhibit autocorrelation. Models that rep-
resent such autocorrelation dependencies among error
terms are known generally as disturbances models, but
are also referred to as heterogeneity models in spatial
analysis, or as serial correlation models in temporal
analysis. Second, autocorrelated errors may be due
to correlation of the response values. For example, as
was mentioned above, the price of an index today may

1Unfortunately, this characteristic cannot be used for
accurate prediction because the chance of a stock’s future
price going up is the same as it going down. The overall
process is is a random walk.
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influence the price tomorrow. This case is typically
modeled by including a lagged value of the response
variable as a regressor. Models that represent these
dependencies are known generally as effects models,
but are also referred to as autoregressive models or as
dependence models in spatial and social network anal-
ysis. Below we discuss each of these in turn.

2.1. Disturbances Model

Serial correlation implies that there is systematic de-
pendence among the error terms of individual in-
stances. The most common form is first-order serial
correlation, in which the error term in one period in-
cludes a proportion of the error term in the previous
period. The is commonly referred to as an AR(1) dis-
turbance model:

Yi = βXi + µi, where µi = ρµi−1 + εi (2)

where ρ is a parameter called the autocorrelation co-
efficient, whose absolute value is constrained to be less
than 1. When ρ = 0, this model reduces to the stan-
dard linear model of equation 1.

When serial autocorrelation is present, analysts gen-
erally abandon OLS in favor of Generalized Least
Squares (GLS) estimators that are BLUE. Unfortu-
nately, knowledge of the correlation structure is needed
for exact GLS estimates and in general this is not
known apriori. Alternative Estimated Generalized
Least Squares (EGLS) methods estimate ρ and β
iteratively or jointly. EGLS estimators are neither
linear nor unbiased but Monte Carlo studies have
shown that EGLS is preferable to OLS in many sit-
uations (Kennedy, 1998). In particular, for the AR(1)
disturbances model, EGLS is equal, or superior, to
OLS when ρ > 0.3. The most frequently used EGLS
methods are Cochrane-Orcutt iterative least squares,
Durbin’s two-stage method, Hildreth-Lu search proce-
dure, and maximum likelihood. These four methods
mainly differ in how they estimate ρ and are asymp-
totically equivalent if ε is distributed normally. Recent
studies have shown that Bayesian estimation, which
averages over a number of ρ estimates, is far superior
to methods that use a single estimate (Kennedy, 1998).

2.2. Effects Model

Effects models take into account dependencies among
the response values by including a lagged value of the
response variable as one of the regressor variables.
When lag equals 1 (e.g. first-order autocorrelation),
the underlying model is referred to as an AR(1) effect

model:

Yi = ρYi−1 + βXi + εi (3)

When the underlying process is correctly modeled with
equation 3, OLS estimators are biased but consistent
as long as the errors are contemporaneously uncor-
related. This means that the nth regressor term is
not correlated with the nth error term; it may be
correlated with other error terms. In this case, an-
alysts consider OLS to be the most appropriate esti-
mator (Kennedy, 1998). In small samples, the OLS
estimate for ρ is downward-biased, and the OLS esti-
mate for β is upward-biased. In general however, there
are no other estimators with superior small-sample
properties so analysts prefer OLS for its asymptotic
properties. Research has focused on obtaining un-
biased OLS estimates for a range of specific autore-
gressive models, with recent work proposing a Monte
Carlo based approach for models with non-normal er-
ror terms, higher-order autocorrelations, and exoge-
nous variables (Tanizaki, 2000).

If, on the other hand, the errors are contemporane-
ously correlated, OLS estimators are biased and in-
consistent. A two-step EGLS (as described in section
2.1) is not feasible in this situation because the resid-
uals are correlated with the exogenous variables. The
most common approach to take in this situation is in-
strumental variable (IV) estimation, which introduces
extra instument variables to decouple the correlation
between the regressors and the error terms to produce
consistent estimators.

Autoregressive conditional heteroskedasticity (ARCH)
models extend the basic AR models described above
to model volatility clustering with non-constant vari-
ance that depends on past information (Engle, 1995).
If the model does not include lagged-dependent vari-
ables, OLS estimators are BLUE, but non-linear max-
imum likelihood estimators are more efficient. If the
model includes lagged-dependent variables then the
OLS standard errors will not be consistent. In this
case, EGLS estimators are asymptotically efficient and
standard errors are asymptotically valid.

3. Spatial Models

Spatial datasets are analyzed in a number of fields
including geography, biology, and economics. These
datasets are typically represented in discrete or con-
tinuous two-dimensional space. For example, a spatial
dataset may record soil properties throughout a spatial
region. Equation 1 may also be used to model these
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data, for example to model the effects of soil proper-
ties on ground water contamination. In this case each
vector index i indicates a point in space. We will focus
on (simpler) models for discrete space where the data
are represented as a lattice—each point in space corre-
sponds to a node in the graph and is linked to a fixed
number of other nodes that are closest with respect to
a distance measure.

Tests for the presence of residual spatial autocorrela-
tion are based on either OLS or ML estimates, includ-
ing tests based on Moran’s I statistic, and Wald, Like-
lihood Ratio, and Lagrange Multiplier tests (Anselin,
1998). If spatial data exhibit autocorrelation, the qual-
ity of OLS parameter estimates are affected in the
same manner as was discussed for temporal data—
OLS estimators are unbiased but they are no longer
BLUE (Anselin, 1998). Again this results in biased
hypothesis tests, with the amount of bias depending
on the level of autocorrelation.

Dependencies among instances occur in the same man-
ner as in the temporal model discussed above. Auto-
correlated errors may be due to spatially correlated
measurement errors. For example, a severe weather
event may affect only part of the region, resulting in
a cluster of correlated errors. On the other hand, au-
tocorrelated errors may be due to spatial autocorre-
lation in the response variable itself—contamination
levels are likely to correlated with the levels at nearby
locations.

3.1. Disturbances Model

When the data exhibit autocorrelated disturbances,
the error term of one instance influences the error
terms of neighboring instances. A spatial disturbances
model subsumes the first-order serial correlation model
(equation 2) by allowing more general dependencies
among the error terms:

Yi = βXi + µi, where µi = ρWµ + εi (4)

Here W is an n × n weight matrix specifying the na-
ture of dependencies among the disturbances, and ρ is
the autocorrelation parameter. When ρ = 0 or W is
uniformly 0, this model reduces to the standard lin-
ear model of equation 1. The matrix W is designed
to represent the influence processes present in the net-
work. Each entry wij denotes the influence node j has
on node i. For example, in a first-order spatial distur-
bances model, row i has a value of 1 for each neighbor
j of node i and all other entries are 0.

Spatial autocorrelation among error terms has been
shown to affect the quality of OLS parameter esti-
mates (Anselin, 1998). The effects are similar to those
reported for temporal models—OLS estimators will be
unbiased but inefficient and GLS estimators are BLUE
but are of academic interest only because the correla-
tion structure is generally unknown. Futhermore, the
multidirectional nature of spatial dependencies limits
the types of EGLS methods that will produce consis-
tent estimates. Approaches based on ML or IV re-
sult in consistent estimates of ρ and therefore retain
the asymptotic properties of consistency and efficiency.
However, in small samples, OLS may sometimes per-
form equivalently, or better than EGLS, in terms of
bias and mean squared error—though finite sample
analysis is limited (Anselin, 1998).

3.2. Effects Model

The second type of dependency is again due to auto-
correlation of the regressor values. The spatial effects
model represents these dependencies with the follow-
ing:

Yi = ρWY + βXi + εi (5)

Again, when ρ = 0 or W is uniformly 0, this model
reduces to the standard regression model (equation 1).

If the response variable is autocorrelated, OLS estima-
tors will be biased, inconsistent, and inefficient regard-
less of the properties of the error term (Anselin, 1998).
In temporal effects models (equation 3), the OLS esti-
mates will be unbiased if the error terms show no serial
correlation. The multidirectional nature of spatial de-
pendencies however, introduces added complexity to
the OLS estimates so the conditions for consistency
are only met when autocorrelation is not present, when
ρ = 0. This means that no consistent estimates can
be obtained for OLS procedures, so spatial analogues
of EGLS methods are not appropriate.

Maximum likelihood (ML) estimation does not suffer
from the same effects that plague OLS estimation so it
is the preferred method of estimation among analysts
for both the disturbances and the effects model. ML
estimators have attractive asymptotic properties—
consistency, efficiency, normality—but are more com-
plex and computationally intensive than OLS. We
should also note here that the attractive asymptotic
properties of ML estimation do not hold uniformly,
but are valid under the following conditions: the exis-
tence of the log-likelihood function for the parameters,
continuous differentiability of the log-likelihood func-
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tion, boundedness of partial derivatives, positive defi-
niteness and/or non-singularity of covariance matrices,
and the finiteness of quadratic forms (Anselin, 1998).
Typically, these conditions are satisfied if the spatial
interaction structure (ρW) is non-explosive (i.e., the
correlation between yi and yi+d goes to zero sufficiently
”quickly” as d →∞, where d is graph distance).

Depending on the model form, ML estimation may
involve a normalizing constant that is difficult to com-
pute in closed form. For the models discussed above,
this involves computing the log-determinant of an n×n
matrix, which requires O(n3) operations for dense ma-
trices. Research has focused on techniques to make
ML estimation more tractable, including pseudolike-
lihood estimation (Besag, 1975), approximate ML es-
timation with Markov Chain Monte Carlo (MCMC)
methods (Geyer & Thompson, 1992), and closed-form
ML methods that avoid direct computation of the de-
terminant (LeSage & Pace, 2001).

Hypothesis tests for ML estimates include the Wald
test, the Likelihood Ratio test, and the Lagrange Mul-
tiplier test, all of which are based on the optimal
asymptotic properties of the ML estimator. The tests
are asymptotically equivalent but care must be taken
when interpreting the tests on finite samples because
some have higher Type I errors and others have higher
Type II errors. The relative power of the tests for
spatial data is yet to be investigated (Anselin, 1998).

4. Network Models

Spatial models have been applied extensively in the
field of social network analysis where data consist of
a network of interactions among entities (e.g., people,
institutions). Social network datasets are represented
as general graphs and differ from temporal and spatial
data representations in that they are not restricted to
a uniform structure. For example, to model the effects
of socio-economic status on voting behavior in a com-
munity, income and status would be measured along
with friendship ties to other members in the commu-
nity. A set of nodes representing people and a set of
edges representing their friendships forms the network
graph. The graph structure varies as each person has a
different number of friends. Again equation 1 may be
used to model network data. In this case each vector
index i indicates a node in the graph.

Spatial autocorrelation models are expressive enough
to use as network autocorrelation models. Equation 4
represents a network disturbances model and equation
5 represents a network effects model (Marsden & Fried-
kin, 1993). In social network models, the weight ma-

trix W specifies the social influence patterns present
in the network and it can affect virtually all of the
conclusions drawn from autocorrelation models (Leen-
ders, 2002). Therefore, correct specification of W is
crucial to the utility of the models. In practice, social
network analysts do not estimate W. Instead, they
specify a W manually to model specific theories of so-
cial influence such as communication and comparison.

Social network models share the same challenges as
spatial models—OLS parameter estimates of autocor-
related data will be inefficient and/or biased and in-
consistent, and although ML estimates are more ro-
bust, they are computationally intensive (Doreian &
K. Teuter, 1984). Simulation studies have demon-
strated the superiority of ML estimates over a wide
range of conditions (Doreian & K. Teuter, 1984). Al-
though social network datasets are not restricted to a
uniform structure, unfortunately there appears to be
little work in social networks that examines the impact
of varying graph structure on parameter estimation
and hypothesis tests.

5. Models in Relational Learning

Datasets with more general dependencies than are seen
in temporal, spatial, and social network data are com-
monplace in relational learning. For example, rela-
tional data for citation analysis can be represented
as a typed, attributed graph, with nodes representing
authors, papers and journals, and edges representing
citation and published-in relationships. A model of
paper topic may include attributes of related authors
(e.g., speciality) and journals (e.g., prestige). How-
ever, an important characteristic of these data is that
topic is autocorrelated—the topic of a paper is not
independent of the topics of papers that it cites.

Relational data pose a number of additional challenges
for model learning and inference. First, relational data
often consider more than one type of entity in the same
dataset (e.g., papers, authors and references). Second,
relational data have complex dependencies, both as
a result of direct relations (e.g., research paper ref-
erences) and through chaining multiple relations to-
gether (e.g., papers published in the same journal).
Third, relational data have varying structure (e.g., pa-
pers have different numbers of authors, references and
citations).

Recent research in relational learning has pro-
duced several novel types of models to address
these issues, including relational Markov network
(RMNs) (Taskar et al., 2002), relational Bayesian
networks (RBNs) (Friedman et al., 1999), and re-
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lational dependency networks (RDNs) (Neville &
Jensen, 2004). These three models have the ability
to represent and reason with autocorrelation; however,
only RMNs and RDNs can reason with arbitrary forms
of autocorrelation—RBNs can only reason with acyclic
forms of autocorrelation, such as relationships that are
structured by temporal constraints (Friedman et al.,
1999).

There are two major findings that relate autocorre-
lation to learning and inference in relational models:
that autocorrelation improves joint inference, and that
autocorrelation may bias feature selection. We discuss
each of these below.

First, several studies have shown that joint inference
can significantly reduce classification error (Macskassy
& Provost, 2003; Chakrabarti et al., 1998; Taskar
et al., 2002; Yang et al., 2002; Neville & Jensen, 2003).
Joint inference refers to procedures that make simul-
taneous statistical judgments about the same vari-
ables for a set of related data instances. By mak-
ing inferences about multiple data instances simulta-
neously, joint inference can exploit autocorrelation in
the data—judgments about one instance can be used
to improve inferences about related instances. Re-
cent work has shown that the improvement over con-
ditional models, which make inferences in isolation,
increases with increased autocorrelation, and in gen-
eral, a joint inference procedure performs better when
higher-order autocorrelation is present or when few la-
bels are known with certainty (Jensen et al., 2004). In
conditional models, the utility of modeling autocorre-
lation depends on whether the values of the autocorre-
lated attributes are known. Partially labeled datasets
are common, but if the known labels do not exhibit
autocorrelation, they cannot be used to seed the in-
ferences. Related work shows that the relative advan-
tage of a joint inference procedure over a conditional
procedure reduces as the percentage of labeled data
increases (Macskassy & Provost, 2003).

Second, recent research has shown that autocorre-
lation may bias feature selection (Jensen & Neville,
2002). Concentrated linkage and autocorrelation re-
duce the effective sample size of a data set, thus in-
creasing the variance of parameter estimates (e.g., fea-
ture scores) estimated using that set. This reduction
in effective sample size parallels the inefficiencies in
temporal and spatial estimators. As a consequence,
the probability of Type I errors is increased—features
formed from objects with high linkage and autocorrela-
tion may be selected as the best feature, even when the
features are random. To our knowledge, few current
relational learning algorithms adjust for the increased

variance in estimation. Specifically, the current instan-
tiation of RDNs use an underlying conditional model
which adjusts for this bias, but the current instantia-
tions of RBNs and RMNs do not. Inefficient param-
eter estimates will impact both selective (e.g., RBN,
RDN) and non-selective (e.g., RMN) models. For both
types of models, the increased variance may result in
overfitting. In addition, the interpretation of feature
weights/scores may be more difficult for non-selective
models and structure learning may be biased in selec-
tive models.

6. Summary and Discussion

Autocorrelation effects have been studied extensively
in other fields and it is clear that they cannot be ig-
nored in relational learning. In particular, if the data
exhibit autocorrelation, either autocorrelated mea-
surement errors or an autocorrelated response vari-
able, then conventional parameter estimates will be
unbiased but will have increased variance. This has
implications for (1) model performance, (2) feature
rankings, and (3) feature selection. When the model
is learned from “small” samples, the increased vari-
ance may lead to overfitting and result in lower perfor-
mance. Although, we typically have “large” datasets
in relational learning, as the level of autocorrelation
increases so does the variance—the amount of data
needed to offset the increased variance may be be
larger than we expect. Increased variance will also im-
pact feature rankings (by feature weights/scores), and
consequently feature selection. Non-selective models
often use feature weights for interpretation (e.g., to
identify the most important features), and selective
models use feature weights to learn the structure of the
model. Both these endeavors will be adversely affected
by the increased variance due to autocorrelation.

How can we adjust for autocorrelation in relational
models? Below, we summarize past research and dis-
cuss options for model representation, learning and in-
ference.

6.1. Representation

The first decision is how to include autocorrelation
in the model representation—whether to model auto-
correlation directly through variables or indirectly in
the error term. This choice corresponds to selection
of the effects model, the disturbances model, or some
combination of the two, and may be based on the re-
searcher’s hypothesis about the dependencies present
in the data. Explicit representation may result in more
interpretable models, since the influence of an autocor-
related response variable is clear. However, implicit
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representation in the error term may be more broadly
applicable. This approach could allow the use of ex-
isting models without a change of representation, but
with only an adjustment for the effects of autocorrela-
tion.

The second decision is how to encode the autocorre-
lation dependencies. This decision corresponds to the
functional form of autocorrelation (e.g., first-order).
For the spatial and network models discussed above,
this refers to the specification of the weight matrix.
For relational models, this usually refers to specifica-
tion of autocorrelation features. For example, to pre-
dict the topic of a web page, we may include a feature
that encodes the topics of other hyperlinked pages.
While considerable attention has been paid to accu-
rate parameter estimation in temporal and spatial au-
tocorrelation models, it appears that researchers are
less concerned with model/feature selection. However,
one could imagine searching over a space of autocor-
relation specifications to learn the correct structure.

6.2. Learning

The effect of autocorrelation on parameter estimation
has been studied extensively. Below is a summary of
the findings in temporal, spatial and network analysis:

1. If autocorrelation is ignored:

• Parameter estimates are computationally ef-
ficient.

• Parameter estimates are unbiased but have
increased variance.

• Hypothesis tests and confidence intervals
may be biased.

2. If autocorrelation is modeled:

• Parameter estimates are computationally
complex, but more tractable approximate
methods exist.

• Parameter estimates are asymptotically opti-
mal but may be biased in finite samples.

• Finite sample comparison is limited. More
complex estimation techniques may not al-
ways be justified.

• Hypothesis tests are asymptotically unbiased
but the relative power of various tests may
vary on finite samples.

Some examples of model parameters in relational
learning include clique potentials and feature weights.
Results for temporal and spatial analysis indicate that

there may be a tradeoff between computational ef-
ficiency and accurate parameter estimation. Under-
standing the effect of varying levels of autocorrelation
on parameter estimation for finite samples is an im-
portant area for research for the relational learning
community.

The effects on parameter estimation will also impact
structure learning. Structure learning typically in-
volves feature selection, which corresponds to either
explicit or implicit hypothesis testing. It has been
shown that autocorrelation can lead to increased Type
I errors in hypothesis tests, which may lead to a un-
fair comparison among different features. The impact
of these errors has not been fully explored in rela-
tional learning. Initial results indicate that they lead
to overly complex models with excess structure, and
may degrade model performance (Neville et al., 2003).

6.3. Inference

The literature on spatial, temporal, and social net-
work autocorrelation models does not provide much
guidance for inference because it focuses on accurate
model learning rather than prediction of unobserved
variables. There has, however, been preliminary work
in relational learning that suggests joint inference can
significantly reduce classification error, and that this
reduction increases with autocorrelation. Clearly, this
is an area with many open questions—e.g., Can au-
tocorrelation be exploited to improve inference effi-
ciency? How does autocorrelation interact with var-
ious inference procedures? How does the amount of
labeled data interact with the level of autocorrelation
in the dataset to determine the improvement in accu-
racy obtained by joint inference?

7. Conclusions

Autocorrelation is ubiquitous—datasets exhibiting au-
tocorrelation are found in a range of fields including
sociology, economics, geography, and physics—and has
been studied extensively. In this paper we presented
findings from econometrics, spatial statistics, and so-
cial network analysis. A common finding is that ig-
noring autocorrelation may result in unduly complex
models, and biased, inconsistent, or inefficient estima-
tors. The effects of autocorrelation are sometimes ad-
dressed by modeling the autocorrelation explicitly, and
sometimes by using statistical procedures that are ro-
bust to these effects.

For reasons we stated earlier, we expect autocorrela-
tion to have greater impact on relational models than
on temporal, spatial, and network models. Although
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the presence of autocorrelation has been widely re-
ported for relational datasets, there has been little fo-
cus on the impact of autocorrelation on model learning
and inference. The results we discuss here reveal that
this is an important area for future research.
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